CIS 331 Programming Assignment #8
Extending the Person Class with Subclasses

Due Thursday, 4//22/10 before midnight
In this assignment, you will create subclasses that specialize the Person class's data and behaviors. In particular, you will create two new classes, Faculty and Student, both of which are subclasses of the Person class.

During your programming efforts you will gain experience in inheritance, method overriding, and polymorphism, as well as recognizing when casting is required and implementing run-time identification of and instance's class.

The Person Class

In your Person class, you should add a new instance method called toString. This method overrides the toString method of the Object class, and should return the String “Person”. As a result, if you return an instance reference of the Person class, the toString method will automatically be invoked. Your listPeople static method should use this to display the class of the object being pointed at by each element of the people array. Your personInfo method should also use this to append the class of the current instance to the returned string. This way, the personInfo method will return, in addition to the name of the person, the specific type of person (Person, Student, or Faculty).
To simplify use of the Person class’s static variables and constants in the subclasses, you can change their visibility modifiers from private to protected. This way, the subclasses can have direct access to these variables (they will need it in their add- methods). All instance variables, however, should remain private.
The Faculty Class

This is the simpler of the two subclasses you will create. Aside from the members that it inherits from Person, it has a single member variable to indicate the rank of the faculty member. The rank must be one of four possible values: instructor, assistant professor, associate professor, or full professor. You can decide for yourself the appropriate data type for the rank.

You are required to write a default constructor that invokes the superclass’s default constructor and then sets the rank to assistant professor. In addition, there should be an overloaded constructor that takes the first name, last name, age, gender, marital status, and rank as parameters. The overloaded constructor passes the Person parameters on to the Person class’s overloaded constructor, then sets the rank according to the parameter.
You will also need an accessor and mutator method for the rank, and the set method should guarantee that the rank is valid; if the parameter is not a valid rank, your set- method should arbitrarily set the rank to assistant professor.
In addition to the default constructor, you will create a toString method that overrides the one of the Person class. In this one, you should just return the value "Faculty" in order to identify the instance.

Also, there should be an overridden instance method personInfo. This method should first invoke the Person class's personInfo to obtain the Person information, and (if detailed information is required) append to this the rank of the faculty member. Then the string should be returned to the caller.
Finally, there will be a static method called addFaculty. Its behavior is virtually identical to the addPerson method, except that instead of creating a Person instance, you are creating a Faculty instance. Just as with the addPerson method, you should ensure that there is still space in the people array and should assign the new Faculty instance to the next available element of this array. NOTE: there is not a separate array of Faculty members! All instances of any subclass of Person will be referenced by the people array of the Person class.

The Student Class

This class is a little more complex than the Faculty class. A Student has a major, which can be either CIS, marketing, management, finance, accounting, or undeclared. In addition, there is a class standing, which must be one of the following: freshman, sophomore, junior, or senior. Finally, each student instance GPA, which must be a value between 0.0 and 4.0.
As with the Faculty class, you are required to write a default constructor and an overloaded constructor. The default constructor invokes the superclass default constructor, and then sets the class standing to freshman and the major to undeclared. The overloaded constructor takes in all the Person attributes as parameters, as well as an additional three parameters: the major, class standing, and GPA.
For each of the Student variables, you will need accessor/mutator methods. Each set- accessor method must ensure that the values passed in are valid. If the parameters are incorrect, set them according to the following default values: major is undeclared by default; class standing is freshman by default; a GPA, which is 0.0 by default.
The Student class's overridden personInfo method should first invoke the Person class's personInfo to receive the string containing person information and then (if full information is required) concatenate the information about the student. This will include the major, class standing, and the student's GPA.

As with the Faculty class, your Student class should have a toString method that overrides the one of the Person class. In this one, you should just return the value "Student" in order to identify the instance.

The Student class should also have a static method called showOverallGPA that calculates the average of all the grade point averages of the entire student population and returns a string with a message indicating how many students there are and what the overall average GPA is for the entire student population. This method should loop through the array of people and accumulate the grade point averages of all the students in the array, and then use the count to provide the average of these. Beware that not all the elements of this array point to Student instances; therefore, you will need to make sure that a reference points to a Student instance before attempting to obtain the GPA. Also, since the People array is of type Person, you will need to treat the element as if it points to a Student in order to obtain the GPA (this requires type casting).

Finally, there will be a static method called addStudent. Its behavior is virtually identical to the addPerson method, except that instead of creating a Person instance, you are creating a Student instance. Just as with the addPerson method, you should ensure that there is still space in the people array and should assign the new Student instance to the next available element of this array. NOTE: there is not a separate array of Students! All instances of any subclass of Person will be referenced by the People array of the Person class.

The Application Class

You will need to modify your application class to do the following in addition to what you already have in your existing PeopleApplication class:
1) You already have an option to create a new Person. You now refine this option so that the user can indicate a regular Person, a Student, or a Faculty member.

a. In all cases, you prompt the user for the Person information.

b. In the case of a Faculty member, you also prompt for the rank.

c. In the case of a Student, you also prompt for the major, class standing, and grade point average.
d. Depending on which type of person is required, you either call addPerson, addStudent, or addFaculty.

2) You will need an option to show the average GPA across all students, and this option should call the Student class’s showOverallGPA static method.
You should still keep all the other options (listing people, finding a specific person, and calculating the average age).
Deliverables:

You will post to Blackboard's digital dropbox a zip file with the package folder containing your source code files (.java files) for your Person, Student, Faculty, and PeopleApplication classes. In addition, modify your previous UML diagram to include Student and Faculty classes, together with the inheritance relationship shown, and have this in your zip file as well.

