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I. INTRODUCTION


Knowledge is hard to obtain regarding complicated reality and complicated systems.  However, complex systems lead to even greater problems of knowledge than complicated ones, even when in important ways complex systems may appear simpler than complicated ones.  A complicated system will have many parts that are interconnected in a variety of ways that may not be obvious and may be hard to discern or untangle.  However merely complicated systems will “add up” in a reasonably straightforward way.  Once one figures out these interconnections and their nature, one can understand the whole relatively easily as it will ultimately be the sum of those parts, which may nevertheless be hard to understand on their own.  However, in the case of complex systems, by their nature they usually manifest that phenomenon first identified by Aristotle that the whole may be greater than the sum of the parts.  This greater degree of wholeness will often be due to nonlinear relations within the system such as increasing returns to scale or tangled non-monotonic relations.  Even though there may be fewer variables and relations, the complex nature of the relations makes knowledge and understanding of the system more difficult (Israel, 2005).

The knowledge problem is more formally known as the epistemological problem, and this author has previously addressed it in this context (Rosser, 2004).  However, while drawing on discussion in that paper, this one will not only update arguments made there but will consider additional topics such as the complexity foundations of Herbert Simon’s “bounded rationality” concept (Simon, 1957, 1962) as well as how complexity can underlie non-ergodicity and related phenomena to generate fundamental uncertainty (Davidson, 1982-83, 2015; O’Donnell, 2014-15; Rosser, 2016; Alvarez and Ehnts, 2016). In this case, the epistemological problem may well arise from the underlying complex ontology (Davidson, 1996; Rosser, 1998, 2001).

How nonlinear dynamical systems manifest problems of knowledge is easily seen for chaotic systems, which are characterized by the problem of sensitive dependence on initial conditions, known popularly as the “butterfly effect.”  If minute changes in initial conditions, either of parameter values controlling a system or of initial starting values, can lead to very large changes in subsequent outcomes of a system, then it may essentially require an infinite precision of knowledge to completely know the system, which undermines the possibility for rational expectations for such systems (Rosser, 1996).  Also, fractality of dynamic attractor basin boundaries in systems with multiple such basins can behave similarly such that even the slightest amount of stochastic noise in the dynamical system can lead to very different outcomes (Rosser, 1991).


The problem of logic or computation arises in complex systems of multiple interacting heterogeneous agents thinking about each others’ thinking.  Although game theoretic solutions such as Nash equilibria may present themselves, these may involve a certain element of ignorance, a refusal to fully know the system.  Efforts to fully know the system may prove to be impossible due to problems of infinite regress or self referencing that lead to non-computability (Binmore, 1987; Albin with Foley, 1998; Koppl and Rosser, 2002; Mirowski, 2002; Landini et al., 2019). This becomes entangled with deeper problems in the foundations of mathematics involving constructivist logic and its link to computability (Velupillal, 2000; Zambelli, 2004; Rosser, 2010, 2012); Kao et al., 2012). 


We consider the role of Herbert Simon in understanding the deep relations between complexity and the limits of knowledge.  As a founding figure in the study of artificial intelligence, he was fully aware of the computational complexity issues arising from the logical paradoxes of self-referencing and related matters.  He was also of the limits of computational capabilities of humans as well as the high cost of obtaining information.  From these ideas he developed the concept of bounded rationality (Simon, 1957) as he basically invented modern behavioral economics based on this.  He also dug more deeply into complexity issues as he also largely developed the idea of hierarchical complexity (Simon, 1962), which adds further layers to the epistemological difficulties associated with understanding complex systems.  The influence of these ideas of Simon has been both deep and wide (Rosser and Rosser, 2015).

Finally we shall consider the question of the ergodic/nonergodic approach understanding fundamental Keynesian uncertainty (Davidson, 1982-83).  This approach has come under criticism by O’Donnell (2014-15) who argues that Davidson has misinterpreted the nature of ergodicity and calls for a behavioral approach to understanding uncertainty, with Davidson (2015) replying. Rosser (2016) offers an analysis that reconsiders the foundations of ergodicity and shows that both have made arguments based on misunderstandings, with some crucial exceptions to widely repeated views arising in chaotic and other complex systems (Shinkai and Aizawa, 2006), once again finding a deep role of complexity in understanding the limits of knowledge.
II. FORMS OF COMPLEXITY?


In The End of Science (1996, p. 303) John Horgan reports on 45 definitions of complexity that have been gathered by the physicist Seth Lloyd.  Some of the more widely used conceptualizations include informational entropy (Shannon, 1948), algorithmic complexity (Chaitin, 1987), stochastic complexity (Rissanen, 1989), and hierarchical complexity (Simon, 1962).  Three other definitions have been more frequently used in economics that do not appear on Lloyd’s list, namely simple complicatedness in the sense of many different sectors with many different interconnections (Pryor, 1995; Stodder, 1995), dynamic complexity (Day, 1994), and computational complexity (Lewis, 1985; Velupillai, 2000).  We shall not consider the knowledge problems associated with mere complicatedness, which are simpler than those associated with true complexity (Israel, 2005).


According to Day (1994), dynamic complexity can be defined as arising from dynamical systems that endogenously fail to converge to either a point, a limit cycle, or a smooth explosion or implosion.  Nonlinearity is a necessary but not sufficient condition for such complexity.  Rosser (1999) identifies this definition with a big tent view of dynamic complexity that can be subdivided into four sub-categories: cybernetics, catastrophe theory, chaos theory, and small tent complexity (now more commonly called agent-based complexity)  The latter does not possess a definite definition, however Arthur, Durlauf, and Lane (1997) argue that such complexity exhibits six characteristics: 1) dispersed interaction among locally interacting heterogeneous agents in some space, 2) no global controller that can exploit opportunities arising from these dispersed interactions, 3) cross-cutting hierarchical organization with many tangled interactions, 4) continual learning and adaptation by agents, 5) perpetual novelty in the system as mutations lead it to evolve new ecological niches, and 6) out-of-equilibrium dynamics with either no or many equilibria and little likelihood of a global optimum state emerging.  Certainly such systems offer considerable scope for problems of how to know what is going on in them.

Computational complexity essentially amounts to a system being non-computable.  Ultimately this is depends on a logical foundation, that of non-recursiveness due to incompleteness in the Gödel sense (Church, 1936; Turing, 1937).  In actual computer problems this problem manifests itself most clearly in the form of the halting problem (Blum et al., 1998), that the halting time of a program is infinite.  Ultimately this form of complexity has deep links with several of the others listed above, such as Chaitin’s algorithmic complexity.  These latter two approaches are the ones we shall consider in more detail in the next two sections.

III. DYNAMIC COMPLEXITY AND KNOWLEDGE

In dynamically complex systems, the knowledge problem becomes the general epistemological problem.  Consider the specific problem of being able to know the consequences of an action taken in such a system.  Let G(xt) be the dynamical system in an n-dimensional space.  Let an agent possess an action set A.  Let a given action by the agent at a particular time be given by ait.  For the moment let us not specify any actions by any other agents, each of whom also possesses his or her own action set.  We can identify a relation whereby xt = f(ait).  The knowledge problem for the agent in question thus becomes, “Can the agent know the reduced system G(f(ait) when this system possesses complex dynamics due to nonlinearity”?


First of all, it may be possible for the agent to be able to understand the system and to know that he or she understands it, at least to some extent.  One reason why this can happen is that many complex nonlinear dynamical systems do not always behave in erratic or discontinuous ways.  Many fundamentally chaotic systems exhibit transiency (Lorenz, 1992).  A system can move in and out of behaving chaotically, with long periods passing during which the system will effectively behave in a non-complex manner, either tracking a simple equilibrium or following an easily predictable limit cycle.  While the system remains in this pattern, actions by the agent may have easily predicted outcomes, and the agent may even be able to become confident regarding his or her ability to manipulate the system systematically.  However, this essentially avoids the question.


Let us consider four forms of complexity: chaotic dynamics, fractal basin boundaries, discontinuous phase transitions in heterogeneous agent situations, and catastrophe theoretic models related to this third form.  For the first of these there is a clear problem for the agent, the existence of sensitive dependence on initial conditions.  If an agent moves from action ait to action ajt, where lait – ajtl < ε < 1, then no matter how small ε is, there exists an m such that lG(f(ait+t’) – G(f(ajt+t’)l > m for some t’ for each ε.  As ε approaches zero, m/ε will approach infinity.  It will be very hard for the agent to be confident in predicting the outcome of changing his or her action.  This is the problem of the butterfly effect or sensitive dependence on initial conditions.  More particularly, if the agent has an imperfectly precise awareness of his or her actions, with the zone of fuzziness exceeding ε, the agent faces a potentially large range of uncertainty regarding the outcome of his or her actions.  In Edward Lorenz’s (1963) original study of this matter when he “discovered chaos,” when he restarted his simulation of a three-equation system of fluid dynamics partway through, the roundoff error that triggered a subsequent dramatic divergence was too small for his computer to “perceive” (at the four decimal place).


There are two offsetting elements for chaotic dynamics.  Although an exact knowledge is effectively impossible, requiring essentially infinitely precise knowledge (and knowledge of that knowledge), a broader approximate knowledge over time may be possible.  Thus, chaotic systems are generally bounded and often ergodic (although not always).  While short-run relative trajectories for two slightly different actions may sharply diverge, the trajectories will at some later time return toward each other, becoming arbitrarily close before once again diverging.  Not only may the bounds of the system be knowable, but the long-run average of the system may be knowable.  There are still limits as one can never be sure that one is not dealing with a long transient of the system, with it possibly moving into a substantially different mode of behavior later.  But the possibility of a substantial degree of knowledge, with even some degree of confidence regarding that knowledge is not out of the question for chaotically dynamic systems.


Regarding fractal basin boundaries, first identified for economic models by Hans-Walter Lorenz (1992) in the same paper in which he discussed the problem of chaotic transience.  Whereas in a chaotic system there may be only one basin of attraction, albeit with the attractor being fractal and strange and thus generating erratic fluctuations, the fractal basin boundary case involves multiple basins of attraction, whose boundaries with each other take fractal shapes.  The attractor for each basin may well be as simple as being a single point.  However, the boundaries between the basins may lie arbitrarily close to each other in certain zones.


In such a case, although it may be difficult to be certain, for the purely deterministic case once one is able to determine which basin of attraction one is in, a substantial degree of predictability may ensue, although again there may be the problem of transient dynamics, with the system taking a long and circuitous route before it begins to get anywhere close to the attractor, even if the attractor is merely a point in the end.  The problem arises if the system is not strictly deterministic, if G includes a stochastic element, however small.  In this case one may be easily pushed across a basin boundary, especially if one is in a zone where the boundaries lie very close to one another.  Thus there may be a sudden and very difficult to predict discontinuous change in the dynamic path as the system begins to move toward a very different attractor in a different basin.  The effect is very similar to that of sensitive dependence on initial conditions in epistemological terms, even if the two cases are mathematically quite distinct.


Nevertheless, in this case as well there may be something similar to the kind of dispensation over the longer run we noted for the case of chaotic dynamics.  Even if exact prediction in the chaotic case is all but impossible, it may be possible to discern broader patterns, bounds and averages.  Likewise in the case of fractal basin boundaries with a stochastic element, over time one should observe a jumping from one basin to another.  Somewhat like the pattern of long run evolutionary game dynamics studied by Binmore and Samuelson (1999), one can imagine an observer keeping track of how long the system remains in each basin and eventually developing a probability profile of the pattern, with the percent of time the system spends in each basin possibly approaching asymptotic values.  However, this is contingent on the nature of the stochastic process as well as the degree of complexity of the fractal pattern of the basin boundaries.  A non-ergodic stochastic process may render it very difficult, even impossible, to observe convergence on a stable set of probabilities for being in the respective basins, even if those are themselves few in number with simple attractors.


For the case of phase transitions in systems of heterogeneous locally interacting agents, the world of the so-called “small tent complexity.”  Brock and Hommes (1997) have developed a useful model for understanding such phase transitions, based on statistical mechanics.  This is a stochastic system and is driven fundamentally by two key parameters, a strength of interactions or relationships between neighboring agents and a degree of willingness to switch behavioral patterns by the agents.  For their model the product of these two parameters is crucial, with a bifurcation occurring for their product.  If the product is below a certain critical value, then there will be a single equilibrium state.  However, once this product exceeds a particular critical value two distinct equilibria will emerge.  Effectively the agents will jump back and forth between these equilibria in herding patterns.  For financial market models (Brock and Hommes, 1998) this can resemble oscillations between optimistic bull markets and pessimistic bear markets, whereas below the critical value the market will have much less volatility as it tracks something that may be a rational expectations equilibrium.


For this kind of a setup there are essentially two serious problems.  One is determining the value of the critical threshold.  The other is understanding how the agents jump from one equilibrium to the other in the multiple equilibrium zone.  Certainly the second problem resembles somewhat the discussion from the previous case, if not involving as dramatic a set of possible discontinuous shifts.  

Of course once a threshold of discontinuity is passed it may be recognizable when it is approached again.  But prior to doing so it may be essentially impossible to determine its location.  The problem of determining a discontinuity threshold is a much broader one that vexes policymakers in many situations, such as attempting to avoid catastrophic thresholds that can bring about the collapse of a species population or of an entire ecosystem.  One does not want to cross the threshold, but without doing so, one does not know where it is.  However, for less dangerous situations involving irreversibilities, it may be possible to determine the location of the threshold as one moves back and forth across it.

On the other hand in such systems it is quite likely that the location of such thresholds may not remain fixed.  Often such systems exhibit an evolutionary self-organizing pattern in which the parameters of the system themselves become subject to evolutionary change as the system moves from zone to zone.  Such non-ergodicity is consistent not only with Keynesian style uncertainty, but may also come to resemble the complexity identified by Hayek (1948, 1967) in his discussions of self-organization within complex systems.  Of course for market economies Hayek evinced an optimism regarding the outcomes of such processes.  Even if market participants may not be able to predict outcomes of such processes, the pattern of self-organization will ultimately be largely beneficial if left on its own.  Although Keynesians and Hayekian Austrians are often seen as in deep disagreement, some observers have noted the similarities of viewpoint regarding these underpinnings of uncertainty (Shackle, 1972; Loasby, 1976; Rosser, 2001).  Furthermore, this approach leads to the idea of the openness of systems that becomes consistent with the critical realist approach to economic epistemology (Lawson, 1997).

Considering this problem of important threshold brings us to the final of our forms of dynamic complexity to consider here, catastrophe theory interpretations.  The knowledge problem is essentially that previously noted, but is more clearly writ large as the discontinuities involved are more likely to be large as the crashes of major speculative bubbles.  The Brock-Hommes model and its descendants can be seen as a form of what is involved, but returning to earlier formulations brings out underlying issues more clearly.

The very first application of catastrophe theory in economics by Zeeman (1974) indeed considered financial market crashes in a simplified two-agent formulation: fundamentalists who stabilized the system by buying low and selling high and “chartists” who chase trends in a destabilizing manner by buying when markets rise and selling when they fall.  As in the Brock-Hommes formulation he allows for agents to change their roles in response to market dynamics so that as the market rises fundamentalists become chartists, accelerating the bubble, and when the crash comes they revert to being fundamentalists, accelerating the crash.  Rosser (1991) provides an extended formalization of this in catastrophe theory terms that links it to the analysis of Minsky (1972) and Kindleberger (1978), further taken up in Rosser et al. (2012) and Rosser (2020a).  This formulation involves a cusp catastrophic formulation with the two control variables being the demands by the two categories of agents, with the chartists’ demand determining the position of the cusp that allows for market crashes.
The knowledge problem here involves something not specifically modeled in Brock and Hommes, although they have a version of it.  It is the matter of the expectations of agents about the expectations of the other agents.  This is effectively the “beauty contest” issue discussed by Keynes in Chapter 12 of this General Theory (1936).  The winner of the beauty contest in a newspaper competition is not who guesses the prettiest girl, but who guesses best the guesses of the other participants. Keynes famously noted that one could start playing this about guessing the expectations of others in their guesses of others’ guesses, and that this could go to higher levels, in principle, an infinite regress leading to an impossible knowledge problem.  In contrast, the Brock and Hommes approach simply has agents shifting strategies after watching what others do.  These potentially higher level problems do not enter in.  These sorts of problems reappear in the problems associated with computational complexity.
IV. KNOWLEDGE PROBLEMS OF COMPUTATIONAL COMPLEXITY

Regarding computational complexity, Velupillai (2000) provides definitions and general discussion and Koppl and Rosser (2002) provide a more precise formulation of the problem, drawing on arguments of Kleene (1967), Binmore (1987), Lipman (1991), and Canning (1992).  Velupillai defines computational complexity straightforwardly as “intractability” or insolvability.  Halting problems such as studied by Blume et al. (1998) provide excellent examples of how such complexity can arise, with this problem first studied for recursive systems by Church (1936) and Turing (1937).

In particular, Koppl and Rosser reexamined the famous “Holmes-Moriarty” problem of game theory, in which two players who behave as Turing machines contemplate a game between each other involving an infinite regress of thinking about what the other one is thinking about.  This has a Nash equilibrium, but “hyper-rational” Turing machines cannot arrive at knowing it has that solution or not due to the halting problem.  That the best reply functions are not computable arises from the self-referencing problem involved fundamentally similar to those underlying the Gödel Incompleteness Theorem (Rosser, 1936; Kleene, 1967, p. 246). Such problems extend to general equilibrium theory as well (Lewis, 1991; Richter and Wong, 1999; Landini et al,, 2019).
Binmore’s (1987, pp. 209-212) response to such undecidability in self-referencing systems invokes a “sophisticated” form of Bayesian updating involving a degree of greater ignorance.  Koppl and Rosser agree that agents can operate in such an environment by accepting limits on knowledge and operate accordingly, perhaps on the basis of intuition or “Keynesian animal spirits” (Keynes, 1936).  Hyper-rational agents cannot have complete knowledge, essentially for the same reason that Gödel showed that no logical system can be complete within itself.
However, even for Binmore’s proposed solution there are also limits.  Thus, Diaconis and Freedman (1986) have shown that Bayes’ Theorem fails to hold in an infinite dimensional space.  There may be a failure to converge on the correct solution through Bayesian updating, notably when the basis is discontinuous.   There can be convergence on a cycle in which agents are jumping back and forth from one probability to another, neither of which is correct.  In the simple example of coin tossing, they might be jumping back and forth between assuming priors of 1/3 and 2/3 without ever being able to converge on the correct probability of 1/2.  Nyarko (1991) has studied such kinds of cyclical dynamics in learning situations in generalized economic models.
Koppl and Rosser compare this issue to that of the Keynes’s problem (1936, chap. 12) of the beauty contest in which the participants are supposed to win if they most accurately guess the guesses of the other participants, potentially involving an infinite regress problem with the participants trying to guess how the other participants are going to be guessing about their guessing and so forth.  This can also be seen as a problem of reflexivity (Rosser, 2020b). A solution comes by in effect choosing to be somewhat ignorant or boundedly rational and operating at a particular level of analysis.  However, as there is no way to determine rationally the degree of boundedness, which itself involves an infinite regress problem (Lipman, 1991), this decision also ultimately involves an arbitrary act, based on animal spirits or whatever, a decision ultimately made without full knowledge.

A curiously related point here is the newer literature (Gode and Sunder, 1993; Mirowski, 2002) on the behavior of zero intelligence traders.  Gode and Sunder have shown that in many artificial market setups zero intelligence traders following very simple rules can converge on market equilibria that may even be efficient.  Not only may it be necessary to limit one’s knowledge in order to behave in a rational manner, but one may be able to be rational in some sense while being completely without knowledge whatsoever.  Mirowski and Nik-Kah (2017) argue that this completes a transformation of the treatment of knowledge in economics in the post-World war II era from assuming that all agents have full knowledge to all agents having zero knowledge.
A further point on this is that there are degrees of computational complexity (Velipillai, 2000; Markose, 2005), with Kolmogorov (1965) providing a widely accepted definition that the degree of computational complexity is given by the minimum length of a program that will halt on a Turing machine. We have been considering the extreme cases of no halting, but there is indeed an accepted hierarchy among levels of computational complexity, with the knowledge difficulties experiencing qualitative shifts across them.  At the lowest level are linear systems, easily solved, with such a low level of computational complexity we can view them as not complex.  Above that level are polynomial (P) problems that are substantially more computationally complex, but still generally solvable.  Above that are exponential and other non-polynomial (NP) problems that are very difficult to solve, although it remains as yet unproven that these two levels are fundamentally distinct, one of the most important unsolved problems in computer science.  Above this level is that of full computational complexity associated where the minimum length is infinite, where the programs do not halt, the sort we have discussed in most of this section.  Here the knowledge problems can only be solved by becoming effectively less intelligent.
V.  COMPLEXITY FOUNDATIONS OF BOUNDED RATIONALITY AND LIMITED KNOWLEDGE

Herbert A. Simon was a polymath who published over 900 papers in numerous disciplines and is generally considered to be the “father of modern behavioral economics” (Rosser and Rosser, 2015).  He certainly coined the term (Simon, 1955), although earlier economists certainly accepted many ideas of behavioral economics going at least as far back as Adam Smith (1759). Central to his conception of behavioral economics was the concept of bounded rationality. His concern with this idea and his search for its ultimate foundations would lead him to consider the “thinking” of computers as a way of studying human thinking, with this making him a founder of the field of artificial intelligence (Simon, 1969).

What is not widely recognized is how complexity ideas underlie this fundamental idea of Simon’s.  He was fully aware of the debates in logic regarding the solvability of recursive systems (Church, 1936; Rosser, 1936; Turing, 1937) and indeed the deeply underlying problems of incompleteness and inconsistency that hold for any computational system whether one in a fully rational person’s head or inside a computer.  The limits imposed by computational complexity were for him profound and ultimate.  However, even before these limits were reached he doubted the computational capabilities of humans at more basic levels, especially in the face of a reality full of complex systems.  And Simon was aware of the unusual probability distributions that nonlinear dynamical systems can generate (Ijiri and Simon, 1964). In addition, his awareness of hierarchical complexity simply added to his understanding of the limits of knowledge by the many forms of complexity (Simon, 1962), with Simon one of the few figures so early on to be attuned to the multiple varieties of complexity.

Simon’s awareness of the limits to knowledge and the importance of bounded rationality led to him emphasizing various important concepts.  Thus he distinguished substantive from procedural rationality (Simon, 1976), with the latter what boundedly rational agents due in the face of the limits to their knowledge.  They adopt heuristic rules of thumb, and knowing that they will be unable to fully optimize, they seek to achieve set goals, satisficing, with Simon’s followers developing this into a whole theory of management (Cyert and March, 1963).  Simon never declared agents to be irrational or crazy, simply unavoidably bounded by limits that they must face and operate within.

A curious matter here has been the occasional effort by more standard neoclassical economists to try to subsume Simon and his view into their worldview.  Thus Stigler (1961) argued that Simon’s view simply amounted to adding another variable to be optimized in the standard model, namely minimizing the costs of information.  If full information is impossible due to infinite cost, then one estimates just the right amount of information to obtain.  This sounds good on the surface, but it ignores the problem that people do not know what the full costs of information are.  They may need to pursue a higher level activity: determining the costs of information.  But that then implies yet another round of this: determining the costs of determining the costs of information, yet another ineluctable infinite regress as ultimately appears in Keynes’s beauty contest (Conlisk, 1996), yet another example of complexity undermining the ability to obtain knowledge.

Just as Stigler attempted to put Simon’s ideas into a narrow box, so others since have attempted to do so as well, including many behavioral economists.  But drawing on multiple approaches to complexity, Simon’s understanding of the nature of the relationship between knowledge and complexity stands on its own as special and worthy of its continuing influence (Velupillai, 2019).

VI. KNOWLEDGE AND ERGODICITY

Finally a controversial issue involving knowledge and complexity involves the deep sources of the Keynes-Knight idea of fundamental uncertainty (Keynes, 1921; Knight, 1921). Both of them made it clear that for uncertainty there is no underlying probability distribution determining important events that agents must make decisions about. Keynes’s formulation of this has triggered much discussion and debate as to why he saw this lack of a probability distribution arising.  
One theory that has received much attention, due to Davidson (1982-83), is that while neither Keynes nor Knight ever mentioned it, what can bring about such uncertainty especially for Keynes’s understanding of it is the appearance of nonergodicity in the dynamic processes underlying economic reality. In making this argument, Davidson specifically cited arguments made by Paul Samuelson (1969, p. 184) to the effect that “economics as a science assumes the ergodic axiom.”  Davidson relied on this to assert that failure of this axiom is an ontological matter that is central to understanding Keynesian uncertainty, when knowledge breaks down, with many since repeating this argument, although Alvarez and Ehnts (2016) argue that Davidson misinterpreted Samuelson who actually dismissed this ergodic view as being tied to an older classical view that he did not accept.

Davidson’s argument has more recently come under criticism by various observers, perhaps most vigorously recently by O’Donnell (2014-15), who argues that Davidson has misrepresented the ergodic hypothesis, that Keynes never considered it, and that Keynesian uncertainty is more a matter of short-run instabilities to be understood using behavioral economics rather than the asymptotic elements that are tied up with ergodicity.  An important argument by O’Donnell is that even in an ergodic system that is going to go to a long-run stationary state, it may be out of that state for a period of time so long that one will be unable to determine if it is ergodic or not.  This is a strong argument that Davidson has not succeeded in fully replying to (Davidson, 2015).

Central to this is to understand the ergodic hypothesis itself and its development and limits, as well as its relationship to Keynes’s own arguments, which turns out to be somewhat complicated, but indeed linked to central concerns of Keynes in an indirect way, especially given that he never directly mentioned it.  Most economists discussing this matter, including both Davidson and O’Donnell, have accepted as the definition of an ergodic system that over time (asymptotically) its “space averages equal its time averages.”  This formulation was due to Paul and Tatiana Ehrenfest (1912), with Paul Ehrenfest a student of Ludwig Boltzmann (1884) who initiated the study of ergodicity (and coined the term) as part of his long study of statistical mechanics, particularly how a long term aggregate average (such as temperature) could emerge from a set of dynamically stochastic parts (particle movements).  It turns out that for all its widespread influence, the precise formulation by the Ehrenfests was inaccurate (Uffink, 2006).  But this reflected that there were multiple strands in the meaning of “ergodicity.”

In fact there is ongoing debate about how Boltzmann coined the term in the first place. His student, Ehrenfest, claimed it was from combining the Greek ergos (“work”) with hodos (“path”), while it has been argued by Gallavotti (1999) that it came from him using his own neologism, monode, meaning a stationary distribution, instead of hodos.  This fits with most of the early formulations of ergodicity that analyzed it within the context of stationary distributions.  
Later discussions of ergodicity would draw on two complementary theorems proven by Birkhoff (1931) and von Neumann (1932), although the latter was proven first and influenced the proof of the former, with von Neumann’s approach more algebraic and emphasizing measure preservation, while Birkhoff’s variation was more geometric and related to recurrence properties in dynamical systems. Both involve long-run convergence, and Birkhoff’s formulation showed not only measure preservation but that for a stationary ergodic system a metric indecomposability such that not only is the space properly filled, but that it is impossible to break the system into two that will also fully fill the space and preserve measure.
The link between stationarity and ergodicity would come to weaken in later study, with Malinvaud (1966) that a stationary system might not be ergodic, with a limit cycle being an example, with Davidson aware of this case from the beginning of his discussions.  However, it continued to be believed that ergodic systems must be stationary, and this remained a key for Davidson as well as being accepted as well by most of his critics, including O’Donnell.  However, it turns out that this may break down in ergodic chaotic systems of infinite dimension, which may not be stationary (Shinkai and Aizawa, 2006), which brings back the role of chaotic dynamics in undermining the ability to achieve knowledge of a dynamical system, even one that is ergodic.
Given these complications it is worthwhile to return to Keynes to understand what his concerns were, which came out most clearly in his debates with Tinbergen (1937, 1940; Keynes, 1938) over how to econometrically estimate models for forecasting macroeconomic dynamics.  A deep irony here is that Tinbergen was a student of Paul Ehrenfest and so was indeed influenced by his ideas on ergodicity, even as Keynes did not directly address this matter.  In any case, what Keynes objected to was the apparent absence of homogeneity, essentially a concern that the model itself changes over time.  Keynes’s solution to this was to break a time-series down into sub-samples to see if one gets the same parameter estimates as one does for the whole time-series.  Homogeneity is not strictly identical to either stationarity or ergodicity, but it is probably the case that at the time Tinbergen, following Ehrenfest, probably assumed all three holding for the models he estimated.  Thus indeed the ergodic hypothesis was assumed to hold for these early econometric models, whereas Keynes was skeptical of there being a sufficient homogeneity for one to assume one knew what the system was doing over time. 
VII. CONCLUSIONS



We have reviewed issues related to the problem of knowledge in complex systems.  While there are many competing definitions of complexity, we have identified two that have been most frequently used in economics: dynamic complexity and computational complexity.  Each has its own sort of epistemological problems.  Dynamic complexity is subject to such issues as the sensitive dependence on initial conditions of chaos theory, or the uncertainty due to fractal basin boundaries in stochastic nonlinear systems, or the pattern of phase transitions and self-organizing transformations that can occur in systems with interacting heterogeneous agents.  Such problems imply that in effect only an infinite degree of precision of knowledge will allow one to fully understand the system, which is impossible.

In computationally complex systems the problem is more related to logic, the problems of infinite regress and undecidability associated with self-referencing in systems of Turing machines.  This can manifest itself as the halting problem, something that can arise even for a computer attempting to precisely calculate even a dynamically complex system as for example the exact shape of the Mandelbrot set (Blum et al., 1998,).  A Turing machine cannot understand fully a system in which its own decisionmaking is too crucially a part.  However, knowledge of such systems may be gained by other means.

These computational problems as well as those arising in nonlinear dynamical systems were key to Herbert Simon formulating his concept of bounded rationality. This was reinforced by his initiation of the idea of hierarchical complexity as well.

In dynamical systems debates have long arisen regarding how fundamental uncertainty of the Keynes-Knight type can arise.  Davidson and others have argued that this is deeply linked to nonergodicity of such systems, but in fact such elements as homogeneity and stationarity may be more important.  The realization that a chaotic ergodic system might be nonstationary makes clear that the problems of knowledge in such systems go well beyond just nonergodicity.


In the end, the serious epistemological problems associated with complex economic systems do imply that there exist serious bounds on the rationality of economic agents.  These bounds take many forms, inability to understand the internal relations of a system, inability to fully know crucial parameter values, inability to identify critical thresholds or bifurcation points, inability to understand the interactions of agents, especially when these agents are thinking about how each other are thinking about each others’ thinking.  Infinite regress problems imply non-decidability and non-computability for hyper-rational Turing machine agents.  Thus, economic agents must ultimately rely on arbitrary acts and decisions, even if those simply involve deciding what will be the bounds beyond which the agent will no longer attempt to solve the epistemological problem.
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