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1 Introduction
This chapter will review the development of the theory of complex oligopoly dynamics from the 1970s to the year 2001 in its main strands.  It will also provide certain speculations regarding possible future developments.  This will serve as a link between the first chapter's discussion of the broader history of oligoply theory up to the 1940s and the more specific chapters that present current models in the rest of this book.  But, to tell our story we first need to remind ourselves of certain ideas from the first chapter of this book.

   One is the very founding document of oligopoly theory, Cournot's seminal work of 1838.  This is both because the specific model that he presented has been much studied for its ability to generate complex dynamics and also because of its more general foreshadowing of game theory.  It has often been noted that the Cournot equilibrium is but a special case of the Nash (1951) equilibrium, the more general formulation used by modern industrial organization economists in studying oligopoly theory.  Indeed, it is sometimes even called the Cournot-Nash equilibrium.  Although many of the models of complex oligopoly dynamics use the specific Cournot model, many use more general game theoretic formulations.  We note simply as an aside here that Cournot's work was the first to apply calculus to solving an economic optimization problem and also was the first to introduce supply and demand curves, albeit in the "Walrasian" form with price on the horizontal axis.

   The other is the idea of multiple oligoply equilibria.  For competitive markets Walras and Marshall both noted the possibility of multiple equilibria, but von Mangoldt (1863) was apparently the first to observe this case.  Joan Robinson (1933, pp. 57-58) first suggested this possibility for the pure monopoly case because of the possibility of upwardly sloping marginal revenue curves in a world of segmented markets.  Wald (1936) also showed this possibility for the Cournot case when marginal revenue slopes upward.  

   Puu (1995) would eventually demonstrate for the Robinson multiple equilibria monopoly case that if the monopolist follows a Newtonian algorithm search procedure chaotic dynamics can result.  Puu (2000, Chap. 6) further shows for this case a wide variety of other complex dynamics including coexisting attractors, and through the analysis of critical lines, the appearance of tongues and riddled basins of attraction.  Earlier, Bonanno (1987) examined the Robinson type case in a catastrophe theoretic context with smoothly shifting demand curves and fixed cost curves.

   A prescient case is that of Palander's (1939) study of the possible existence of a three-period cycle in a case of no equilibrium in a Cournot model with kinked demand curves, although it is clear that Palander had no idea that such an example might imply what we now know to be chaotic dynamics.  In this regard Palander somewhat resembled Strotz, MacAnulty, and Naines (1953) who first explicitly showed chaotic dynamics in an economics model, but did not understand mathematically what they had done other than that the dynamic pattern was "irregular" in nature.  Although it is possible to observe complex dynamics in models with single equilibria, given sufficiently great nonlinearities induced by lag effects or learning mechanisms, most of the models of complex oligopoly dynamics involve multiple equilibria where such dynamics more readily arise.

2 Basic Chaotic Oligopoly Dynamics
It is appropriate that the first consciously generated model of chaotic dynamics in economics used the Cournot model, given his initiation of the use of calculus in economics.  This effort was carried out by David Rand (1978) who assumed that firm reaction functions were nonlinearly non-monotonic with multiple equilibria arising, although May (1976) had previously suggested that the logistic map could generate chaotic dynamics in a variety of economic models without actually developing any of them.  

   In Rand's (1978) model, two agents A and B produce x([0,1] and y([0,1] respectively, which maximize the respective agent utility functions, uA(x,y) and uB(x,y).  Given an initial point (x0,y0), A adjusts x0 to a local maximum x1, assuming yo fixed, and B adjusts y0 to a local maximum y1, assuming that x0 is fixed.  This defines a dynamic evolutionary process, ((x,y), from which reaction functions MA and MB can be derived.  The reaction functions for one of Rand's smooth examples with all fixed points locally unstable are depicted in Figure 2.1.
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        Figure 2.1  Cournot-Rand Chaotic Duopoly Reaction Functions

   Rand proceeded to prove that if Cr are rth order critical points, then there exists a non-empty open subset U of Cr(I2,R)xCr(I2,R) such that (uA,uB)(U implies that ( has periodic orbits of every period and the non-wandering set of ( contains a Cantor set.  This Cantor set represents a strange attractor for an infinite set of periodicities of possible orbits that are chaotic dynamics.  Rand recognized that a continuous model would generate simpler dynamics, but that an oligopoly of three producers (triopoly) would produce similar results to the duopoly case.  The problem of continuous oligopoly dynamics was investigated for a more general case by Chiarella and Khomin (1996) who showed that even with nonlinear cost or revenue functions and various distributed lags with an unstable equilibrium, the most complex dynamics to emerge will be limit cycles.

   Unsurprisingly Rand's results inspired many followups and modifications.  One due to Shaffer (1984) was to argue that chaotic duopoly dynamics depend on "sophisticated" reaction functions in that non-monotonicities arise only if firms account for such phenomena as interfirm externalities.  "Naiveté" without such awareness tends to eliminate such non-monotonicities and thus also chaotic dynamics, although such phenomena as unstable cobweb cycles can still result.  Shaffer proposed that if firms adopted "consistent conjectures" in which firms react to each other's reaction functions in a "higher" form of sophistication, rapid convergence to Nash equilibrium will result without chaos or cobwebs.

   Dana and Montrucchio (1986) generalized Rand's model to infinite horizon game models via Markov-Perfect-Equilibria (MPE).  General conditions that allow for the existence of MPE in the conditions of the extended Rand model are hard to demonstrate, although for a sufficiently small discount rate any pair of smooth reaction functions could be the MPE of some game.  If an MPE exists, then an orbit of agents playing alternately will resemble a Cournot tâtonnement.  As the discount rate approaches zero the set of MPEs converges on one-shot game best-reply dynamics similar to that studied by Rand.  Dana and Montrucchio argue that the inability of agents to distinguish exogenous randomness from endogenous chaos can lead them to such Cournot-Rand dynamics rather than convergence on long-run optimal behavior.  Bischi, Mammana, and Gardini (2000) study models with MPEs that also exhibit complex dynamics beyond chaos.

   A weakness of the Rand model, even as generalized by Dana and Montrucchio, is that it implies a monopolist will produce zero because a duopolist will produce zero when the other firm produces zero.  Van Witteloostuijn and van Lier (1990) corrected this problem by showing that the general result holds even with the assumption of positive output.  They rationalized non-monotonic firm reaction functions by noting how strategic behavior can lead to firms raising output as a new competitor appears in order to deter entry, drawing on arguments due to Bulow, Geanakoplis, and Klemperer (1985).  The latter noted that if there is a constant elasticity of demand, then each firm's marginal revenue function is increasing in the other's output.  

   Puu (1991) followed this up by showing for a discrete model of Cournot duopoly dynamics, if there is an iso-elastic market demand curve with price simply the reciprocal of the sum of the two firms' outputs and the firms face constant and equal marginal costs, periodic and chaotic dynamics can easily arise.  This is so even though the reaction functions are unimodal, intersecting only once.  This case again implies zero output for the monopoly case and an infinite price in such a case. 

3 Other Forms of Complex Oligopoly Dynamics
Puu (1996, 1998) then extends his model to the case of three oligopolists and especially considers the problem of Stackelberg leadership in which one firm becomes the leader by taking the reaction functions of the other firms into account.  Puu studies the famous case where there is not agreement regarding which firm is the leader, known to be unstable in the standard duopoly case.  Introducing a stochastic element, Puu finds a variety of complex dynamics beyond chaotic dynamics.  In Puu (1997, Chap. 5; 2000, Chap. 7) he follows up on his analysis of the monopoly case by carrying out a more detailed analysis of the duopoly, and triopoly cases.  As these cases give rise to multidimensional systems, he uses the methods of critical curves (or manifolds) and global bifurcations to show many varieties of complex dynamics that will be discussed below, including multistability in the form of coexistent attractors and fractal boundaries of basins of attraction.

   The first to apply these methods to oligopoly theory were Kopel (1996) and Bischi, Stefanini, and Gardini (1998).  Such methods were originated by Mira and Gumowski (1980) and were closely studied for the coupled logistic case by Gardini, Abraham, Record, and Fournier-Prunaret (1994), the case studied by Kopel (1996).  These methods and various extensions and implications were further developed in Mira, Gardini, Barugola, and Cathala (1996), which has served as a prime influence for many of these more recent developments in complex oligopoly dynamics.

     The method of critical manifolds or critical sets (Gumowski and Mira, 1980) is the multidimensional extension of the concept of a critical point in unidimensional dynamical systems, with critical curves being the two dimensional version, frequently used in the duopoly models studied in this literature.  They arise particularly in noninvertible maps (of non-monotonic functions) and are loci characterized by the coincidence of at least two preimages.  Similar to critical points, Jacobian determinants of the dynamical systems vanish on such manifolds of rank zero.  Critical manifolds can be of varying ranks and are boundary lines at which images are folded.  They also generally bound the absorbing areas that contain the attractors while in turn they are contained within the basins of attraction.

     The method of critical manifolds especially involves analysis of the characteristics of the preimages and the images of the critical manifold or set.  Thus for such a critical manifold there will be at least two preimages that are coincident in the preceding period, that is preimages of rank -1.  The set on which they are located is a set of merging preimages.  This coincidence of preimages is a natural implication of the degeneracy of the Jacobian determinant on the critical manifold.  Initial application of this method to complex oligopoly dynamics was due to Kopel (1996) and Bischi, Stefanini, and Gardini (1998).

     In turn, following Mira, Gardini, Barugola, and Cathala (1996), absorbing areas or regions are observed by analyzing the images of the critical manifold to ever higher ranks until a closed region appears.  Absorbing areas trap trajectories of dynamical systems after finite iterations and are bounded by portions of the critical manifold and its images of increasing rank.  A given absorbing area may contain smaller ones, with a minimal invariant absorbing area generally existing.  Generally if the attractor is chaotic it will fill the minimal invariant absorbing area.

     Furthermore, the characteristics of the basins and the basin boundaries can be studied using the method of critical curves.  With regard to the basins, their structure changes when their boundaries cross a critical curve as some parameter is varied.  Such a contact or global bifurcation can cause a connected basin to become disconnected.  In the model studied by Kopel (1996) an interfirm externality on the cost side leads to duopolists' Cournot reaction functions generating a coupled logistic system in which the two control parameters are one that determines the strength of the coupling between the firms' behavior and a speed of adjustment parameter.  Contact or global bifurcations occur as these parameters pass through certain value combinations.  Agiza (1999) shows how control of chaos can occur in the Kopel model.

     When there are multiple coexisting basins of attraction, the condition of multistability, then the peculiarities of their boundaries and interpenetrations become of interest.  The coexisting attractors may be of very different types, e.g. cyclic and chaotic.  Analyzing the coupled logistic duopoly game of Kopel (1996), Bischi, Mammana, and Gardini (2000) show that multiple coexisting attractors of rectangular shapes can arise that exhibit a fractal pattern.  

     Interesting phenomena have been observed in studying cases involving synchronized behavior by duopolists.  Bischi, Stefanini, and Gardini (1998) showed the possibility of intermittency arising from contact bifurcations.  Synchronous behavior alternates with explosions of oscillatory behavior.  

     The case of synchronicity, or more precisely of near-synchronocity, was studied by Bischi, Gallegati, and Naimzada (1999).  They showed that if firms are slightly off from being synchronized in their initial parameter values that bubbling bifurcations can occur that lead to riddled basins where trajectories that are locally repelled from unstable manifolds may belong to basins of other attractors.  In the case of a blowout bifurcation the transversely unstable trajectories outweigh the stable ones and the attractor becomes a chaotic saddle.  This analysis draws heavily on the expanded concept of an attractor due to Milnor (1985).

     Finally, when a bounded attractor contacts the basin of infinity, a final bifurcation can occur that completely destroys the attractor, observed for the duopoly game by Bischi, Stefanini, and Gardini (1998).  This phenomenon was first identified by Abraham (1972, 1985) and variously labeled the blue-sky catastrophe or blue-bagel chaostrophe.  

4 Adjustment and Learning Complexities
     More recently a greater emphasis has been placed upon studying models with greater degrees of adjustment.  Models in which firms are assumed to use adaptive expectations have been studied.  Among the first to do this was Puu (1998, 2000) who found a variety of complex dynamics arising in the Cournot duopoly case with adaptive expectations, including the appearance of fractal attractors.  Others studying this model with more firms and other modfications include Ahmed and Agiza (1998), Agiza (1998), Agiza, Bischi, and Kopel (1999), Ahmed, Agiza, and Hassan (2000), Agliari, Gardini, and Puu (2000), and Huang (2001).

     Such efforts have been extended by Bischi and Kopel (2001), drawing on learning models such as those of Cox and Walker (1998) and Rasssenti, Reynolds, Smith, and Szidarovsky (2000) that reliled on experimental results.  They study the model of Kopel (1996) which is characterized by both adjustment and linking parameters.  Assuming homogeneous expectations among the firms they derive zones for the parameters and initial values that produce a variety of outcomes from convergence to a Nash equilibrium to the coexisting attractors situation with rectangular basins of attraction.  Furthermore, they determine conditions of global bifurcations where basins become disconnected using methods similar to those discussed above.  

     They then consider the case of heterogeneous expectations by the firms and find that this introduces a variety of asymmetries and further complexities.  However, in considering the possibility of consistent expectations equilibria where simple learning autoregressive learning rules can mimic underlying chaotic dynamics (Grandmont, 1998; Hommes, 1998; Hommes and Sorger, 1998) they were unable to find such phenomena in their model.

     Tuinstra (2001, Chap. 5) considers in more detail the problem of heterogeneous expectations in Cournot duopoly dynamics from the standpoint of evolutionary games with learning such as studied by Vega-Redondo (1997).  They derive replicator dynamics (Binmore and Samuelson, 1997) based on a discrete choice model of Anderson, De Palma, and Thisse (1992).  This then is shown to follow arguments developed in Brock and Hommes (1997) based on homoclinic bifurcation theory (Palis and Takens, 1993) that imply a variety of complex dynamics can arise.

     What evolves are population shares following certain strategies that learn based on past performance.  Willingness to switch strategies is a crucial control parameter in this setup.  Although in Brock and Hommes (1997) it is posited that there are many agents, the population shares in Tuinstra (20001, Chap. 5) reflect probabilities that given strategies will be selected by two firms in a mixed-strategy game theoretic context.  In particular the contrasting strategies are one that requires less information but is more destabilizing and one that requires more information but is stabilizing.  He examines the specific cases of best-reply versus perfect foresight and also best-reply versus imitator dynamics.  

     In both of these cases, variations of the parameter controlling the willingness to switch strategies triggers homoclinic bifurcations wherein tangencies arise between stable and unstable manifolds.  There such relatively unsurprising outcomes as wild oscillations of the stable and unstable manifolds, the existence of a Cantor set containing infinitely many periodic points and an uncountable set of aperiodic points, as well as sensitive dependence on initial conditions.  In addition there are the less frequently observed cases of Hénon-like strange attractors for an open interval, the coexistence of many stable cycles, and cascades of infinitely many period doubling and period halving bifurcations.  

     We note that all these possible complex dynamics are occurring in a model with a unique Nash equilibrium.  But this simply reinforces an observation of Bischi and Kopel (2001) that there are large zones of initial conditions and parameter values in evolutionary game dynamics models that do not converge to the unique equilibrium, with many of these non-convergent trajectories following seriously irregular paths.

5 Some Further Speculations and Possibilities
     At this point we shall move beyond established results, including those presented in the later chapters of this book, and speculate somewhat more freely and loosely regarding some possible future directions that this vein of research might follow.  In some cases these involve relatively minor variations on themes already seen here.  In others the differences are noticeably more substantial.

     One somewhat obvious line of pursuit would be to consider a wider range of models that might exhibit the phenomenon of consistent expectations equilibria in models of Cournot duopoly learning dynamics.  As noted above, Bischi and Kopel (2001) were unable to detect such an outcome for the coupled logistic model that they studied.  This might seem to be expected in that the original models studied by Grandmont (1998), Hommes (1998), and Hommes and Sorger (1998) all involved piecewise linear tent maps, and the coupled logistic system is not piecewise linear.  But Hommes and Rosser (2001) have shown that such outcomes can occur with smooth non-invertible maps.  Thus, there may be other reaction function formulations of learning in Cournot duopoly models that might produce this outcome.  They might also find the related learning to believe in chaos (Sorger, 1998) wherein if firms do not initially use coefficients in their autoregressive rule of thumb, they can learn to adjust the coefficients so that they do accurately mimic the underlying chaotic dynamics.

     Yet another exotic possibility might arise by combining the approach of Tuinstra (2001) with that of Bischi and Kopel (2001).  Thus one might have a coupled logistic system operating within a framework of discrete learning with Brock and Hommes (1997) style mean-field dynamics of interacting agents, interpretable as probabilities of strategies.  Shibata and Kaneko (1998) have studied such a system and discovered that in the windows of cyclic dynamics within the chaotic zones, tongues can occur in which there collective fluctuations can arise with substantially greater amplitudes.  One can well imagine not unreasonable models of oligopoly dynamics in which this sort of thing might transpire.

     Finally there is an issue that is not addressed in the essays cited in this chapter, but which easily could have been and arguably should be.  This is the matter of transformations of industrial structure from competition to oligopoly or monopoly and back again.  It was the father of conventional American industrial organization, Joe Bain (1951), who argued that in any industry there is a critical level of concentration at which a qualitative shift occurs in the nature of the industry between being competitive and oligopolistic with the latter's possibility of collusive conduct.  From the perspective of firm managers that point may be where that go from knowing who their competitors are and are able to think about the behavior of each and when they can no longer do so.  The impersonal invisible hand rules the market.

     Clearly this is not a new idea.  Rosser (2000, Chap. 3) discusses this issue in terms of the sudden increases and decreases of control over the world oil market by OPEC, citing a proposed catastrophe theory model due to Woodcock and Davis (1978, Chap. 7) to explain this.  Bradburd and Over (1982) provided empirical support for Bain's original proposition more generally across a wide array of U.S. industries.

     It would seem that many of the techniques and approaches used in some of the literature discussed above might be applicable to this question.  It may well be that the models with larger numbers of heterogeneous agents who cross thresholds of cooperation or competitiveness are what may apply here, with the old prisoner's dilemma example from game theory serving as an obvious metaphor.  The appropriate approach would clearly involve evolutionary approaches to game theory, with a full accounting for mathematical complexity.  Some approaches to this can incorporate the mean-field approach of Brock and Hommes (1997), with a study by Lindgren (1997) being especially promising and provocative.  Albin with Foley (1998) also provide a complexity context for the examination of repeated prisoner's dilemma games.  And, whereas some of the older models assume a fixed number of firms, the work of Axtell (1999) examines the splitting and forming of firms within an extended dynamic game theoretic context with local increasing returns and local instabilities.  This observer thinks that there is much more that can be done with such models that could illuminate the problem of the evolution of market structure itself.

6 Final Observations
     We have seen that since the seminal contributions of David Rand in 1978, a substantial and growing literature has arisen that presents a variety of models of complex oligopoly dynamics of many sorts.  Most of the array of the modern mathematics of nonlinear dynamics and complexity theory has been brought to bear on the problem, with many fruitful and interesting results demonstrated.  Indeed, just as when Cournot introduced calculus to economics to study duopoly and Rand introduced chaos theory to extend his study, we see the problem of oligopoly dynamics leading to some of the major applications of multidimensional chaos theory and its relatives and offshoots in economics.  Much has been done, but much more will be done in the future.

     I would like to conclude by quoting an observation made by Tönu Puu (2000, pp. 236-237) regarding the complexities that can arise in the analysis of monopoly behavior.

     "It may be hard for economists, nourished with textbook monopoly theory, to digest that the monopolist does not know all about the market and may behave in a way seemingly erratic...

     Should the monopolist become suspicious about the fact that he is behaving like a random number generator, the blame could always be on exogenous shifts in the demand function, due to changing prices of close substitutes or to general business cycles.  Not even a regularly periodic behaviour need make him suspicious, because the imagery of economic phenomenal is crowded with all kinds of regular periodic cycles."

     Needless to say, this observation applies with even greater force and relevance to the more complex and complicated cases involving oligopolies and their conduct.
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