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Abstract. This paper presents a possible explanation for some of the empirical properties of asset returns

within a heterogeneous-agents framework. The model turns out, even if we assume the input fundamental

value follows an simple Gaussian distribution lacking both fat tails and volatility dependence, these features

can show up in the time series of asset returns. In this model, the profit comparison and switching between

heterogeneous play key roles, which build a connection between endogenous market and the emergence of

stylized facts.
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1 Introduction

In the last decade with the availability of large data sets

of high-frequency asset price series (including stock, for-

eign exchange and other asset price) and the application

of computer-intensive methods for analyzing their proper-

ties, the research in empirical finance has enjoyed substan-

tial development [1–5]. Pagan[6] and Cont[7] each provides

an authoritative survey of these salient features that are
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common characteristics of all financial markets and clas-

sifies them as some ”stylized facts” such as absence of

autocorrelations and long-range dependence, heavy tails

and conditional heavy tails, volatility clustering.

With the wealth of works in empirical research, to

build a model to explain the stylized facts of the asset

price volatility is still a competitive work. The goal is to

have the simplest and most parsimonious description of

the market and the most faithful representation of the

observed market characteristics. Widely presented models
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are multi-agent models, which are based on interacting

agents using different strategies corresponding to abstract

or real market behavior, the examples include the ”minor-

ity games” model[8–10],the percolation models[11,12] and

the spin models[13,14], and other microscopic models[15–

18]. A typical one based on both economical and physical

approaches is Lux and Marchesi model(LM in the follow-

ing)[19,20],in which a relatively large number of param-

eters enables one to incorporate several aspects of real

financial processes.

Following the route of LM, in this paper we present

a model to explain some ”stylized facts” of asset price

volatility. We propose a simpler mechanism to account for

the absence of autocorrelations and appearance of long-

range dependence, heavy tail and power law in the ex-

treme parts, and volatility clustering. In our model, there

are two types of market participants: fundamentalist and

Non-fundamentalist. This classification is similar to funda-

mentalist-chartist approach [20–22]. The fundamentalist

traders who buy when the asset price is below the funda-

mental value and sell when it is above and noise traders

who use moving average technical trading rules that can

lead them to chase trends. The heterogeneous agents switch

from one type of strategy to the other according to relative

performance.

The first interesting contribution of our paper regards

the social interaction among traders. In the LM model,

there are two components that govern the transitions of

the traders: the herding component and the profit com-

parison. In fact,to obtain a deviation from normality many

other models take into account the herding behavior that

determines ( at least in part) the fat tail property of the

distribution of returns[11–13,17,18]. In our model, the

herding component is absent, and only the profit feedback

plays a role. With the lack of the social interactions, the

model still produces a realistic time series of returns. An-

other remarkable result is the implementation of the mov-

ing average as the main strategy of the noise traders. It

allows a further simplification of the LM model since the

optimistic pessimistic classification for the noise traders

is no longer necessary. Furthermore, the moving average

approach in effect captures the elements of herding. Herd-

ing moves back and forth between bubble and non-bubble

dynamics and also between up and down bubbles within

bubble dynamics. The moving average model essentially

captures these elements. In short, in our model the fat tails

behavior and the volatility clusters depend on two compo-

nents: the one is the transitions of the traders governed by

the profit comparison within effective memory, the other

is the moving average trading rule used by chartist trader

which tends to magnify the random shock to the market.

2 The Model

In our model, there exist two types of traders in the asset

market. One is F-traders, who are fully rational and well

informed; the other is N-traders, who are either less well-

informed, irrational, or risk-loving [24]. Our model is based

on stylized representations of these two types of market

participants who use different strategies.
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2.1 F-traders

F-traders may be referred as ”fundamentalists” or ”infor-

mation traders”. Let x be the current market price of a

unit of asset and v be its fundamental value, which can be

regarded as the present value of the rationally expected

stream of future net earnings of a unit of the asset. We

suppose that the F-traders know the fundamental value

v by means of so-called ”fundamental analysis” based on

all available information about the asset. Obviously, the

F-traders attempt to incorporate the most recent informa-

tion into their estimates of fundamental value. As germane

events may occur almost randomly, the fundamental value

could be rather volatile.

In general, the current market price x diverges from the

fundamental value v. The F-traders think this means tem-

porary ”false pricing” and believe x and v will converge

in the long run. Furthermore, the F-traders’ decision to

buy or sell asset depends on the divergence x and v. If the

spread is strongly positive, the opportunity for a capital

gain and desire for the asset is great; while if it is strongly

negative the risk of a capital loss and rejection of the asset

is great. Therefore the F-traders’ trading strategy is given

by a simple excess demand function:

qF = cF (xt − vt)3 (1)

and

vt = vt−1 + kεt. (2)

where the nonnegative parameter cF measures the F-traders’

excess demand response to a price gap. The cubic formu-

lation in function (1) is selected as a simple expression

for the fact that greater spread induces more desire for

trade[25]. Furthermore, This cubic formulation can block

the market price to go far away from the fundamental

value. εt is assumed to be standard Guassian white noise,

which implies that v is a random walk.

2.2 N-traders

N-traders may be referred as ”Non-fundamentalists” or

”Noise traders”. Here N-traders mainly correspond to chartists,

who use relatively simple and low cost buy-sell rules, such

as so-called ”technical analysis”. One of the most widely

used technical rules is the moving average rule [26]. Ac-

cording to such a rule, buy and sell signals are gener-

ated by two moving averages of the level of the index: a

long-period average and a short-period average. When the

short-period moving average penetrates the long-period

moving average, the N-traders think a trend to be initiated

and capital gain or loss to be expected. This means the

N-traders chase price up and down. Indeed, although they

are generally deemed as irrational or poorly informed, De-

Long et.al [27]demonstrated that noise traders can some-

times do better than all other market participants, espe-

cially when their behavior is driving the market outcomes.

Here we adopt one of the simplest rules: the short-

period moving average is just the current market price

and the long-period one is just an exponentially weighted

moving average, which is also an adaptive expectation of

the market price. Let x denote the market price and y de-

note the long-period moving average, the N-traders’ trade

strategy can also be given as a simplified expression by an
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excess demand function:

qN = cN (xt − yt) (3)

and

yt = αxt−1 + (1− α)yt−1. (4)

where the nonnegative parameter cN measuring the N-

traders’ excess demand response to a price change, and

the parameter α dominates the weight distribution for the

long-period average.

2.3 Market Dynamics

Suppose that the total F-traders and N-traders equal one,

and the F-traders’ share is w, then the aggregate excess

demand of the whole market is

qt = wtq
F + (1− wt)qN . (5)

We suppose that there exists a market-maker who me-

diates the trading in the market. The market-maker helps

to meet the excess demand and adjusts the next period

market price depending on the excess demand. Generally,

we can assume that the change in market price is deter-

mined by a continuous, monotonically increasing function

of the aggregate excess demand. We model the dynamic

adjustment of market price by the following difference

equation:

xt − xt−1 = bqt = bcF wt(vt − xt)3 + bcN (1−wt)(xt − yt).

(6)

with the nonnegative parameter b measuring price adjust-

ment flexibility.

As the market price changes, the share of the two types

of investors evolves. We assume that the type changes on

the basis of the past relative performance of the two trade

strategies. Let dz be the past relative return of the two

trade strategies, we suppose that transition probability of

a formerly N-trader switch to the F-trader group be π and

vice versa be 1− π , where

π =
1

1 + e−λdz
. (7)

with λ as a nonnegative parameter. Therefore the share of

the two types of investors evolves according to following

pattern:

wt+1 =





wt + δ with π

wt − δ with 1− π

with the nonnegative parameter δ < 1 measuring type

switch sensitivity. To avoid unreal values of the share, we

let wt+1 = 1 if wt+1 > 1 and wt+1 = 0 if wt+1 < 0.

To define the past relative return of the two trade

strategies, we define zF and zN as the so-called ”effective

memory of capital return” of the F-traders and N-traders

respectively.

zF
t = h(xt − xt−1)qF

t−1 + (1− h)zF
t−1 (8)

zN
t = h(xt − xt−1)qN

t−1 + (1− h)zN
t−1. (9)

with the nonnegative parameter h < 1 measuring the

time horizon of the past performance evaluation. From

the above recurrence formula we can see that ”effective

memory of capital return” is not real capital return, it

just expresses the weighted average of past observations

of capital return, and the exponent diminishing reflects
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memory law. So the past relative return is also the ”effec-

tive memory” sense of capital return, which is defined as

dz = zF
t − zN

t .

Here we assume transition between fundamentalists

and chartists depends on comparison of ”effective mem-

ory of capital return”. This is similar to the LM model

and other multi-agent models[8–10] but different from the

other fundamentalists-chartists models[21–23], in which

the share of different type of traders only depends on de-

viation of the market price and the fundamental value.

Considering the ”noise trader risk”[27], we think the re-

turn comparison assumption is more reasonable than the

value deviation assumption.

3 Numerical Simulation of the Price

Dynamics

The above section has presented a basic framework of the

asset market model, and it is easy to examine its dynami-

cal behavior by numerical simulation. This section we will

give some simulation results and compare them with the

”stylized facts”.

3.1 Asset price

A simulated time series of asset price is presented by Fig-

ure 1. To explore dynamic property of asset prices, we do

a Dickey-Fuller unit root test on the series to check if the

price follows a unit root process. Table 1 gives results of

the test and shows the test fails to reject the null hypoth-

esis of a unit root in the asset price series at any of the

reported significance levels. This means one is unable to

reject the hypothesis that the asset prices follow a random

walk or martingale process.

3.2 Asset return

We define the rate of asset return as rt = (xt−xt−1)/xt−1.

Figure 2 is trajectory of rt corresponding to the realization

of asset price showed in Figure 1. Figure 3 is the dynamics

of share of the F-traders. Here we focus on the following

characteristics of the trajectory:

Firstly, the phenomenon of volatility clustering and on-

off intermittency shows up. The main feature of volatility

bursts appears to be ubiquitous in our model and does not

hinge on fine-tuning of the model parameters.

Secondly, from Figure 4 we can see that linear auto-

correlation of asset return are insignificant but the auto-

correlation function of absolute returns decays slowly as

a function of the time lag. This means absence of short-

range autocorrelations and existence of long-range depen-

dence.

Thirdly, we turn to fat tail phenomenon. Figure 5 gives

the distribution of the normalized returns (subtracting the

mean and dividing for the standard deviation), the kur-

tosis statistics and Jarque Bera test indicate that there

exists fat tail. The right inset of Figure 5 also gives the

right 5% tail distribution of the returns, it can be looked

upon as a nearly Pareto distribution. The tail index α in

its distribution F (x) = 1 − αx−α can be estimated by

Hill’s method, and the Hill estimate is about 2.60. This
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result is close to the usual empirical finding of tail indices

somewhere between 2 and 4.

Finally, we can see the on-off intermittency phenom-

ena are strongly related with the population structure

of the heterogeneous traders. This implies that it is the

noise traders who enlarge the random shock and cause

the volatility clusters. When the F-traders dominate the

market, we can expect that the return keeps nearly Gaus-

sian distribution.

3.3 Sensitivity Analysis

As an instance, above numerical simulation is limited to

one set of parameters. To evaluate the robustness of the

model, we have done more Monte Carlo simulations with

different parameter sets. we find above characteristics of

return series can exist at a wide range of parameters. Table

2 gives fat tail property of the return data, and the results

are obtained from 5 different parameter sets and each set

includes 100 samples. As computed with empirical data

at daily frequency, the results (including kurtosis and tail

index estimates) look very realistic.

4 Conclusion

We have studied the behavior of a model of asset mar-

ket dynamics with two types of traders, one are funda-

mentalists who trade on the inferred market fundamental

value, another are non- fundamentalists or noise traders

who trade on the chase for guessed trend. The heteroge-

neous agents switch from one type to the other according

to past relative performance which is based on their excess

demand and the market price’s movement. The asset mar-

ket prices are determined by the aggregate excess demand

of all traders. On this basic model, we investigate the re-

lationship between random changes in fundamental value

(as an ”input” to the model system) and market price

changes as outputs of the model system. The simulations

turn out, even if we assume that the news arrival process

follows a simple Gaussian distribution lacking both fat

tails and volatility dependence, these features still show

up in the time series of asset returns. These results sug-

gest that these statistical properties appear as ”emergent

phenomena” from the market process itself and do not

stem from movement of fundamental value. In fact, the

profit feedback and switching between F-traders and N-

traders play key roles, which build a connection between

endogenous market and the emergence of stylized facts.

This is different from the other approaches[11–13,17–20].

Our result is very important to understand the efficient

market hypothesis, which implies that random arrivals of

new information lead to random walk of asset price. But

our work shows even if random information can result in

a random fundamental value, with the hands of the non-

fundamentalists, the asset market price does not necessar-

ily keep a random walk. This may support the argument

that asset market is always not efficient but marginally

efficient [28].
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Table 1. Augmented Dickey-Fuller Unit Root Test on Asset

Price: The ADF Test Statistic is −2.471

1 % critical value −3.434

5 % critical value −2.862

10 % critical value −2.567

Table 2. Fat tail property of the return data: kurtosis and

tail index estimates (median from 100 samples and range of

estimates in the parentheses)

set kurtosis 2.5% tail 5% tail 10% tail

0 13.5 2.85 2.46 2.03

(8.1-40.1) (2.39-3.63) (1.99-2.83) (1.74-2.31)

1 9.8 3.11 2.68 2.15

(5.9-331.0) (2.37-3.75) (2.16-3.15) (1.74-2.49)

2 58.3 2.87 2.52 2.03

(8.2-170.6) (2.33-3.55) (2.14-3.08) (1.66-2.29)

3 13.6 2.90 2.51 2.02

(8.1-42.8) (2.32-3.61) (2.09-3.08) (1.71-2.34)

4 11.3 2.98 2.57 2.15

(7.6-27.8) (2.48-3.58) (2.15-3.03) (1.69-2.46)

Note: Parameter sets are given as: Set 0: b = 1, a = 0.02, g =

0.01, h = 0.01; Set 1: b = 0.8, a = 0.02, g = 0.01, h = 0.01; Set

2: b = 1, a = 0.02, g = 0.01, h = 0.02; Set 3: b = 1, a = 0.03, g =

0.01, h = 0.01; Set 4: b = 1, a = 0.02, g = 0.005, h = 0.01.

Fig. 1. The time series of asset prices Parameters: b = 1, cF =

2, cN = 1, a = 0.02, g = 0.01, h = 0.01, k = 0.001, λ = 1, v =

100.

Fig. 2. The time series of returns.
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Fig. 3. The time series of F-traders’ share.

Fig. 4. The autocorrelations of raw and absolute returns. The

upper dash line is for raw returns and the below solid line is

for absolute returns.

Fig. 5. The distribution of normalized returns. Where original

returns’ mean is -9.19E-7, std.dev is 1.30E-3, Kurtosis is 11.8,

Jarque Bera is 3.26E5. The Hill estimate for the 5% tail returns

is about 2.60.


