Techniques of Hypothesis Testing
Dr. Scott Stevens

Objectives
When you finish reading this article, you should be able to

· Determine the appropriate null and alternate hypotheses for your hypothesis test

· Determine if your test is one- or two- tailed

· Conduct an appropriate test using Excel in any of three ways
· Using the critical score approach

· Using the non-rejection region approach (for a two-tailed test)

· Using the P-value approach
Selecting the Right Null Hypothesis

There are four ideas to keep in mind when creating the null and alternative hypotheses :

· The null and alternative hypotheses always talk about population characteristics, never sample characteristics.  In our course, this means that null and alternative hypotheses will always be about μ and π, never about   eq \o(\s\up8(\d\fo2()((),x) or p.  (In Chapter 10, we’ll be dealing with more than one population, but the null will still be about population parameters.)
· The null and alternative hypotheses are complementary events.  Said less formally, the null and alternative hypotheses “cover all of the bases”.  If the null says “μ < 6”, then the alternative has to be everything that’s left — “μ > 6”.

· The null hypothesis always contains the “=” part of the hypotheses; that is, our null hypotheses will always be “>”, “<” or “=”.  The alternative hypotheses will thus be “<”, “>”, or “≠”.

· If you’re looking for evidence of a claim, that claim must go in the alternative hypothesis, not the null hypothesis.  This is because the result of any hypothesis test is either
· (Strong)  We reject the null hypothesis, and conclude the alternative is true.
· (Weak)   We can’t reject the null; maybe the null hypothesis is true, maybe not.  
The second conclusion is “wishy washy”, but that’s all you can say when you don’t reject the null hypothesis.  As an example, I say, “the average weight of a pumpkin is 10 pounds” while someone else says “the average weight of a pumpkin is 11 pounds”.  You choose a single pumpkin at random and find its weight to be 10.3 pounds.  This isn’t enough evidence for you to conclude I’m lying, nor that the other person is lying.  But clearly, at least one of us in mistaken, and maybe we both are.  You don’t reject my claim, and you don’t reject the other claim—that doesn’t mean you have any reason to believe that one of these is true.
This means that it’s usually easiest to find the alternative hypothesis first, when you’re looking for evidence of something.

Example:  

I believe that most Americans over 65 own computers, and am looking to establish this by hypothesis testing.  What are the appropriate null and alternative hypotheses?

Well, this is a question about proportions.  Since I want to see if most Americans over 65 own computers, I want to see if there’s evidence that π > 0.5.  This means my null hypothesis must be H0:  π < 0.5.  

One-Tailed and Two Tailed Tests

Here’s an easy rule of thumb:

· If the null hypothesis is an equality (“=”), you’re doing a two-tailed test

· If the null hypothesis is parameter > number, you’re doing a lower-tail test

· If the null hypothesis is parameter < number, you’re doing an upper-tail test
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What does the “tail of the test” mean?  It’s specifying what kind of sample statistic will lead to rejection of the null hypothesis.  If the null hypothesis is that a population’s mean is 100, then a sample mean that’s a lot bigger than 100 or a lot smaller will lead you to reject the original claim.  You reject the claim with either a large enough or small enough sample mean.
If the null hypothesis is that the population’s mean is at least 100 (μ > 100), then the only kind of sample that causes you to doubt this is one with a mean a lot less than 100.  You reject the null hypothesis only in the “lower tail”.  Conversely, if the null hypothesis is that the population’s mean is at most 100 (μ < 100), then the only kind of sample that causes you to doubt this is one with a mean a lot more than 100.  You reject the null hypothesis only in the “upper tail”.

Graphically, this comes up by drawing the sampling distribution (for p or   eq \o(\s\up8(\d\fo2()((),x))  based on the null hypothesis and shading the appropriate tail(s) to show the “rejection region”.  For all of our problems, the sampling distribution is going to be normal, meaning that we can move our picture over to a picture in “z-land”or “t-land”.  You can see these on the next page.
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I’ve shown the curves with z, but the same picture applies for t, too.  In more advanced statistics, the picture might not be a normal curve, but the terms “upper tail” and “lower tail” still have the same meaning.  (By the way, the vertical stripes appearing on the yellow normal curves are just an artifact of the software; they shouldn’t be there.)
Make sure you’re comfortable with the idea of upper, lower, and two-tail testing, since we’re going to need it for what’s coming up.
The Critical Score Approach to Hypothesis Testing
Look at the pictures above, and think about what they’re saying.  The regions in blue are the “rejection regions”.  If the z (or t) score from your sample falls in these regions, you’re going to reject the null hypothesis, otherwise you’re not.  Each blue region begins at a critical “cutoff number”.  For the lower tail test, it’s a negative number (about -1.5 for the example above).  For an upper tail test, it’s a positive number (about +1.5 in the example above).  For a two tailed test, of course, there are actually two cutoff numbers, with one being the negative of the other.  (These values are about  +1.5 in the example above.)  For each picture, we call the cutoff number z* (or t*).  It’s called the critical z (or t) value, or simply the critical value.

This means that, whenever you’re using the critical score approach to hypothesis testing, you’ve got two different z (or t) values to worry about—the one from your sample, and the critical one.  The critical value, as we’ve already said, is always represented z* (or t*).  The one computed from your sample is often symbolized zsam (or tsam,), just to make it clear where it came from.  I’ll usually follow that convention in this class.
To formalize what we’ve said, then, let’s write down the procedure for hypothesis testing with the critical score approach.
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The advantages of the critical value approach is that it’s widely used and can be applied to either one or two tailed tests.  For a “z distribution” problem, it also lets you figure out what the critical score is before you gather your sample.  The disadvantage is that, while it tells you whether you reject the null hypothesis at some previously specified level of significance, it doesn’t tell you by how much you reject it.  As well see later, the P-value approach addresses this deficiency.

The Nonrejection Region Approach to Hypothesis Testing
The idea is to construct in interval in the sampling distribution (rather than in “z-land” or “t-land”).  If your sample statistic (  eq \o(\s\up8(\d\fo2()((),x) or p) is in this interval, we don’t reject the null hypothesis.  If it’s outside of this interval, we do.

The nonrejection region approach and the critical value approach are extremely closely related, and in a real sense, the only difference between them is whether you’re working in the z or t picture, or in the   eq \o(\s\up8(\d\fo2()((),x) or p picture.  Because of this, I’m not going to develop this approach, except in one special case:  two-tailed tests.  For such tests, this approach trades heavily on our work in Chapter 8.  Here it is:
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For example, if my null hypothesis is H0:  π = 0.36 and my sample size is 100, I’m going to compute σp =   eq \r((.36)(1-.36)/100) = 0.048.  If I work at 95% confidence, z* = 1.65, so my nonrejection region is 0.36 + 0.048 ( 1.65, or 0.281 to 0.439.  If my psam is in this range, I won’t reject the null hypothesis.  If it’s out of this range, I will.
The advantage of this approach is that it uses a lot of the Chapter 8 work almost unchanged.  The disadvantage is that it only works for two-tailed tests.  Further, like the critical value approach, it doesn’t tell you how strongly you reject the null hypothesis.  The P-value approach will, and that’s our next topic.

The P-Value Approach to Hypothesis Testing

[image: image6.emf]Remember the pictures for the critical score approach from the last section?  I’ve reproduced them here.  The rejection region on each (in blue) shows the rejection region of the test.   If zsam (or tsam) ends up in this range, it’s a “more extreme” or “weirder” value than the critical z (or t) score, and so we reject the null hypothesis.  In brief:

· For a lower tail test, the further your zsam or tsam is below 0, the weirder it is.  

· For an upper tail test, the further your zsam or tsam is above zero, the weirder it is.

· For a two tailed test, the further zsam or tsam is away from zero (either above or below), the weirder it is.
These notions are central to the idea of P-value.  When you find the z or t value of your sample, it’s natural to wonder how odd such a sample would be, if the null hypothesis were true.  The P-value of the sample answers this, by telling you what fraction of all samples would be as weird or weirder than the one you obtained.


To figure this out, we’re going to follow a fairly straightforward process.  The primary complications, as we’ll see, arise from Excel, rather than from the ideas involved.


If the null hypothesis were true, the P-value of a sample tells you how often you’d expect to find a random sample that is as weird (or weirder) than yours.  If the null hypothesis were true, α tells us the fraction of the samples for which we’re (incorrectly) going to reject the null hypothesis.  Saying that the P-value is less than alpha is exactly the same thing as saying that zsam or tsam is more extreme (or weirder) than z* or t*.
· What fraction of samples are weirder than z* or t*?  α.

· What fraction of samples are weirder than zsam or tsam?  The P-value of your sample.

The advantage of the P-value approach is that it allows different people to conduct hypothesis tests at different levels of significance.  If, for example, the P-value of a sample is .043, then I’d reject the null hypothesis at the 5% level of significance, but not at the 1% level of significance.  (.043 is less than .05, but not less than .01.)  When we see extremely small P-values (like .0000000001), it provides very strong evidence that the null hypothesis is false.

As we said before, the main problem with the P-value approach comes from Excel.  This is true to a lesser extent with the critical score approach, so we take a section here to revisit the necessary computations in Excel.

Hypothesis Testing Calculations in Excel:  
NORMSINV, NORMSDIST, TINV, and TDIST
In hypothesis testing, sometimes we’re dealing with a lower tail, sometimes with an upper tail, and sometimes with both.   More, sometimes the relevant distribution is a t, and sometimes its a z.  There are therefore six different combinations of tails and distributions that can arise.  Each of these conceptually similar combinations is handled differently in Excel, because of a few unavoidable facts.  Keep them in mind and you don’t need to memorize all of the formulas in this section.  Just draw a picture for each case. (You can do that more easily than I can in Word!)

The facts:

· NORMSINV and NORMSDIST relate a cutoff to how much area is to the left of that cutoff.

· TINV relates a cutoff to how much area is in both tails beyond that cutoff.
  (TDIST relates a cutoff to how much area is in either one tail or in both, depending on what you ask for.)

· TDIST and TINV can handle nonnegative cutoffs only.  This means that if your tsam is negative, you’re going to need to change its sign before putting it in TDIST.  It also means that when you find t* for a lower tail test, TINV is going to give you a positive value, and you’ll have to change its sign.
We’ll look at them from easiest to hardest.  In each case, we’ll talk about finding the critical value for the test and the P-value for the sample.  Obviously, you have to know α before you can find the critical score, and you have to know zsam or tsam before you can find the P-value of the sample.

I. z distribution, lower tail test
Using the picture:
For critical score work:  the cutoff is z* and the area is α

For P-value work:  the cutoff is zsam and the area is the P-value
This is what the NORMSINV and NORMSDIST functions are built for—areas below a cutoff.

z* = NORMSINV(α)


P-value = NORMSDIST(zsam)

II. t distribution, two tailed test


Using the picture:
For critical score work:  one of the cutoffs is t* and the total area is α

For P-value work:  the upper cutoff is |tsam| and the area is the P-value

This is what TINV and TDIST were built for—area in the two tails, total.

t* = TINV(α, n – 1)


P-value = TDIST(| tsam |, n-1, 2)

The third number in the TDIST function specifies that we want the area of two tails, not just one.  

IMPORTANT NOTE:  The vertical bars around tsam are absolute value bars.  Excel will not accept a negative tsam.  If your tsam is negative in this test, replace it the corresponding positive value.  You’ll get the correct answer.  For example, if a sample of size 100 has  tsam = -3.1, then the P-value of the sample is =TDIST(3.1, 99, 2).
III. z distribution, upper tailed test

Using the picture:
For critical score work:  the cutoff is z* and the area is α

For P-value work:  the cutoff is zsam and the area is the P-value
You know that the area above a cutoff is given by 1-normsdist(cutoff), so
z* = NORMSINV(1 – α)

P-value = 1 – NORMSDIST(zsam)

IV. z distribution, two tailed test
Using the picture:
For critical score work:  one of the cutoffs is z* and the total area is α

For P-value work:  the lower cutoff is -|zsam| and the area is the P-value
The NORMSINV and NORMSDIST functions deal with area below the cutoff; if you like, they’re built to find lower tail areas and cutoffs.  To find the correct z* for a two tailed test, we have to remember that the rejection region (total area α) is split between the two tails, each with area α/2.  Just like in the confidence interval work in Chapter 8, this means that the z* for, say, α = 0.05 is given by =NORMSINV(.975).  Again, draw the picture.  In general,

z* = NORMSINV(1-  eq \s\do2(\f(α,2)))

P-value = 2 * NORMSDIST(-|zsam|)

IMPORTANT NOTE:  The vertical bars around zsam are absolute value bars.  The P-value calculation is using a negative value in NORMSDIST to find the area of the lower tail, then doubles it.  Whether your zsam is +3.14 or -3.14, it’s P-value will still be computed by =2*NORMSDIST(-3.14)

V. t distribution, upper tailed test

Using the picture:
For critical score work:  the cutoff is t* and the area is α (so two tails would have 2α)

For P-value work:  the cutoff is tsam and the area is the P-value

While TDIST lets you choose the number of tails that you’re talking about, TINV always deals with the area of the two tails, total.  This means that if you want an area of α in the upper tail above the cutoff, you’re going to have to tell TINV that the total area in the two tails for this cutoff is 2α.

t* = TINV(2α, n-1)


P-value = TDIST(tsam, n-1, 1)

The “1” in the P-value calculation means “one tail”.

IMPORTANT NOTE:  Excel can’t take the TDIST of a tsam which is negative.  For an upper tail test, though, you’ll never reject a negative tsam unless α is more than 0.5.  If you want to know the P-value anyway, use this:

P-value for a negative tsam in an upper tailed test = 1 – TDIST(-tsam, n-1, 1)

Note that –tsam is a positive number.  This calculation will always give you a value bigger than 0.5.

VI. t distribution, lower tailed test

Using the picture:
For critical score work:  the cutoff is t* and the area is α (so two tails would have 2α)  TINV will give the wrong sign.
For P-value work:  the cutoff is tsam and the area is the P-value.  TDIST will make you change the sign of tsam.
This is the one that requires the most fiddling about.  TDIST and TINV both deal with positive cutoffs only and TINV always talks about two tails.  Again, your best bet is to draw the picture, but here are the resulting formulas.  Note that your tsam is probably negative, in which case –tsam is a positive number.
t* = -TINV(2α, n-1)


P-value = TDIST(-tsam, n-1, 1)

So, for example, if α = .01, tsam = -3.1, and n = 50 then the calculations above give

t* = -TINV(.02, 49) and 

P-value = TDIST(3.1, 49,1)
IMPORTANT NOTE:  If your tsam is positive, then you’re not going to reject the null hypothesis for any α less than 0.5.  If you want to know the P-value anyway, use this:
P-value for a positive tsam in an upper tailed test = 1 – TDIST(tsam, n-1, 1)

This calculation will always give you a value bigger than 0.5.

Tip:  The easiest way to remember which tail goes with an inequality test is to look at the alternative hypothesis.  The inequality sign in the alternative “points” to where the rejection region is.





Hypothesis Testing with the Critical Score Approach





Find the critical score for your problem, z* or t*.  To do this, sketch the appropriate picture for your test.  It’ll look pretty much like one of the three on the top of the last page, except that it might be a “t” curve, and it might have a different cutoff.  The total rejection area (in blue, on my pictures) has to total to the level of significance, α.  This means that, for a two tailed test, the area in each tail is α/2.





Tip:  Remember that NORMSINV and TINV refer to different regions on their respective curves.  NORMSINV deals with the area to the left of the cutoff, while TINV deals with the area in the two tails total.





Draw your sampling distribution for �  eq \o(\s\up8(\d\fo2()((),x)� or p.  If your check is okay, it’ll be essentially normal.  Label the mean with the hypothesized value of μ or π.  Label the standard deviation with the appropriate calculation for σx-bar or σp.  





NOTE:  Even if your null hypothesis is an inequality, the value you’ll use for the mean of this picture is the (limiting) hypothesized value.  For example, if the null hypothesis is       π > 0.4, I’m going to act as if I know π and it is 0.4 for all of the checks, σp calculations, curve drawing, etc.)





Compute zsam or tsam in the usual way from this sampling distribution picture.


 


Determine if your zsam or tsam is in the rejection region.  Reject the null hypothesis if it is.  This is most easily done by looking at the pictures on the last page, but to be specific:





For a two-tailed test, reject if your sample z is less than –z* or bigger than +z*.


For a lower tailed test, reject if your sample z is less than z* (which is a negative number).


For an upper tailed test, reject if your sample z is greater than z*.





I’ve written this for z’s, but it works the same for t’s, of course.








The Nonrejection Region Approach for Two Tailed Tests





As always, verify that the sampling distribution is essentially normal.





Compute the MOE for this problem as you would in Chapter 8.  (Note:  for a proportion problem, you should use the hypothesize value of π, not p.)





Construct the nonrejection region by finding (hypothesized value) + MOE.





Note:  (hypothesized value) is μ or π, not �  eq \o(\s\up8(\d\fo2()((),x)� or p!





The P-value of a sample answers this question:





Assume that the null hypothesis is true.  Look at your sample of size n, and its zsam� or tsam.  What fraction of all samples of size n from the hypothesized population would have z or t scores more extreme than this zsam or tsam?





Hypothesis Testing with the P-Value Approach








Draw your sampling distribution for �  eq \o(\s\up8(\d\fo2()((),x)� or p.  If your check is okay, it’ll be essentially normal.  Label the mean with the hypothesized value of μ or π.  Label the standard deviation with the appropriate calculation for σx-bar or σp.  





NOTE:  Even if your null hypothesis is an inequality, the value you’ll use for the mean of this picture is the (limiting) hypothesized value.  For example, if the null hypothesis is       π > 0.4, I’m going to act as if I know π and it is 0.4 for all of the checks, σp calculations, curve drawing, etc.)





 Compute zsam or tsam in the usual way from this sampling distribution picture.


 


Draw the z (or t) picture, labeling zsam or tsam value.  Shade everything more extreme (more weird) than this zsam or tsam on the picture.  (See the last page for details on what this means.)  Find the area of the shaded region.  This is the P-value of the sample.





If the P-value is less than α, reject the null hypothesis.  Otherwise, don’t reject it.








� Some textbooks break this rule, writing the null as an equality, even in a one-tailed test.  I don’t think this is a good practice, and we won’t do this.





� Actually, there is no practical reason why this has to be so when dealing with a continuous variable (which we’re doing in all of our hypothesis tests).  There would be evidence to reject a null hypothesis with a “<” if and only if there would be evidence to reject a “<”, but it’s conventional to put the equality in the null, and we’ll follow that convention.


� For a two tailed test with a z or t, the lower cutoff is just the negative of the upper cutoff, so we’d normally just give the upper one.  Thus, in the two-tailed test at the top of this page, z* is about 1.5.  Some people even follow this (positive value only) convention when working with a lower tail test.  They’d say that the critical z in the lower tail test at the top of the page is 1.5, trusting you to know that the “real” number is -1.5.  We’ll try not to do this!


� So, if the cutoff is 2.6, they talk about the area where t is less than -2.6 and the area where t is greater than 2.6. 





