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Forewardtc \l1 “Introduction:  What Are You Doing Here?

There are two broad categories of jobs: those in which the worker mechanically carries out a task, and those in which the worker thinks.  Not only does the latter category tend to pay more, but the jobs (for those capable of doing them) are infinitely more interesting and satisfying.  While these “thinking” jobs don’t usually raise blisters on your hands, the work is as hard as any physical labor.
Those who trade on physical labor will rarely find their unassisted muscles sufficient to the task.  They use the tools appropriate to the work at hand, shovel or forklift, and choose the techniques that allow those tools work most effectively.  A “mental laborer” who intends to perform his or her job through sheer raw brainpower is as foolhardy as the physical laborer who intends to dig a swimming pool with two bare hands.

Tools—and techniques.  The more approaches, perspectives, past experiences, tools that you have in your bag of tricks, the easier your job becomes.  In this course, if you’re successful, you’ll learn a set of tools and techniques that can be applied directly (and indirectly) to a host of problems.  The kind of “brain work” we’ll be dealing with is a common one: problem solving.  To be more specific, the task is to figure out what the problem is, and then to figure out what to do about it.  In truth, Management Science has little to say about determining what the problem is.  Each MS technique deals with a particular class of problem, but determining to which of these classes (if any) your problem belongs only comes with experience.  Part of the reason for this is that real-life situations rarely fit our MS models perfectly.

MS models are mathematical constructs, idealizations of real-world situations.  These models have a simpler structure than the real world, and that simpler structure allows for a simple mathematical description of the model’s behavior.  From the model’s behavior, we can get a feel as to the behavior of the real-world system.  The match between model and reality is rarely perfect, but the better the model fits the real system, the better its predictions will be.  In many, many situations, the mathematical model gives a better prediction for the real-world system than anything else we know of.  And new mathematical models are being devised all the time.

But it goes further than this.  Modeling allows you to decompose a complicated system or task into a collection of individually understandable modules.  If you’re the manager of a large project, doing this is the first step in assigning responsibilities to your team members.  Each team member is given a comprehensible, relatively self-contained task, and each knows the form and content of the deliverables expected of him or her.  Modeling also allows you to re-tool, to learn new things quickly and efficiently.  That’s because most new things that you learn are actually relatively small variations on skills that you have already mastered.  If you have a clear understanding of what you can already do—if you have a mental model of the process—you can often adapt that understanding in a small way to use the new tool or accomplish the new task.  At the most primitive level, modeling lets you use the remote control on a TV that you’ve never seen before.  At more sophisticated levels, modeling may allow you to recognize that problems in finance, farming, job shop design, and airline scheduling can all be addressed by the same approach.  In fact, in 291, we’ll do exactly that.

And that’s why you should work hard at this course.  Not because it’s required.  Rather, because many of the problems that you face professionally are going to be expressible quantitatively, and for many of these problems, an MS model is going to be the fastest, most-reliable way to get the answer you need.  Because if you don’t do the quantitative analysis, someone else will—and if you are unable to understand what he or she has done, you’ll also be powerless to participate in the decision making process that follows that analysis.  And most importantly of all, because the question-and-answer approach we’ll develop to solve quantitative, professional problems works surprisingly well with non-quantitative or personal problems as well.  You can develop another tool of vision, and the result is the result that always comes with that expanded vision—perspective.

Scott Stevens

July 15, 2002

Oh!  One more important point!  

This text is written as a conversation between you and me.  Throughout the text, you’ll see questions that I’m putting to you.  Most of the time, the answers to these questions also appear.  Your natural tendency will be to read my question, treat it as rhetorical, and then go on and read the answer.  Many times, this is NOT what I want you to do.

See the typeface I’m using right now?  This is my “conversational” type face.  Whenever you see something written this way, I’m asking you—yes, YOU—to do something before going any farther.  Please take these requests seriously.  Doing so will allow you to forge a strong understanding of the basics, and that will make the rest of the work much easier!

You’ll probably want to have paper and pencil near at hand when reading, both to scribble any work you need to answer the questions, or to write notes in your margins for questions to ask in class.
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Introduction to Mathematical Programming

tc \l1 “INTRODUCTION TO MATHEMATICAL PROGRAMMING
Problem?  What Problem?tc \l2 “Problem?  What Problem?
It’s often easier to find your way if you know where it is that you are trying to go, and why.  Let me sketch for you, then, our direction and destination for the first part of this course.  

We commonly face situations like this.  You are given a problem.  Your job is to find the best possible solution to the problem.  Some proposed solutions might not be acceptable, because the situation has some inherent restrictions, such as a limited budget.  Problems like these are called optimization problem XE "problem:optimization" \b s, since “optimal” simply means “best”.  In order to have any hope of solving an optimization problem, we have to have a clear idea of three things.  First, what do we mean by a “best solution”?  Second, what are the relevant restrictions to the situation?  And lastly, how can we express our candidate for a solution in a form that someone else can understand?

If the problem is going to be addressable using quant, each of these three questions will have to be answered in terms of measurable quantities.  A measurable quantity is just what it sounds like:  a quantity that will be represented by a number in any proposed solution to our problem.  Number of hours worked and number of customers interviewed are examples of measurable quantities.  Note that part of defining a measurable quantity is choosing a unit of measure for it.  Measurable quantities are at heart of most of the work that we’ll do this semester, and we’ll study them in detail in Chapter 2.

We could specify a candidate solution to our problem simply by saying how big certain measurable quantities should be.  We call these quantities decision variables XE "decision variable" , since we decide their values.  For example, we might decide to buy 5 gallons of gas at Texaco on Monday and 15 gallons of gas at Chevron on Tuesday.  The decision variables are the “controls” that we have on our problem, whose values we can adjust (within limits) as we please
.  You choose the values for the decision variables, and they determine everything else.

The goal, of course, has to be expressed using measurable quantities, too.  In some problems, the goal is to make this quantity as large as possible (such as when the goal is to maximize number of dollars of profit).  In other problems, the goal may be to make the measurable quantity as small as possible (for example, a goal of minimizing number of customer complaints).

We represent the goal mathematically by an objective function XE "objective function" , which is simply a mathematical formula.  (“Objective”, as you know, is just another word for “goal”.)  We plug the values of the decision variables into the objective function and crank out 
the numerical value of the objective.  For example, if we sell x pairs of shoes at a profit of $10 per pair, our profit from shoe sales will simply be 10x, 10 times x.  Objective functions can be quite complicated, but they always perform the same task: to take the values of the decision variables and synthesize them into a single number that measures the “goodness” of that solution.

Okay, we’ve talked about measurable quantity representations of candidate solutions (the decision variables) and of the goal (the objective function).  Now, what about a representation of the problems restrictions and rules?  We need to be able to express these as a set of mathematical relations, called constraints XE "constraint" .  For example, if 10x represents our profit for some problem, then the requirement that profit be at least $50 could be expressed by the constraint 10x > 50.  If all of the constraints are satisfied (“made true”) by a candidate solution, that candidate solution is allowed.  If the candidate solution breaks one or more of the constraint relations, then it breaks one of the “rules” of the situation, and so is not acceptable as a solution.

It should be clear to you that, for a heck of a lot of situations, no obvious mathematical representation of the problem exists.  Suppose you are trying to maximize your happiness this week.  What numeric quantities define your candidate solutions?  Some are obvious (like number of hours spent studying), but I doubt you could provide a complete list, or that such a list even exists.  And even if you had such a list, how would you combine those quantities into one objective function?  No one understands himself
 so well as to be able to perfectly predict his reaction to a particular set of stimuli.  And what about constraints?  Again, some may be obvious (such as sleep requirements), but could you come up with a set of restrictions that completely and perfectly define your possible courses of action?  Highly doubtful.

The good news is that, outside of the realm of personal psychology, many problems do allow such a mathematical representation, and many more allow themselves to be closely approximated by such mathematical models.  We’ll focus on these.  As a bonus, we’ll uncover some general principles that might have some application to less quantitative decision-making, as well.

Narrowing the Field:  Linear Programming and Linear Functionstc \l2 “Narrowing the Field:  Linear Programming
We started out with the category of problems, and now have narrowed our focus to that of mathematically representable optimization problems.  As a general principle, the more you narrow your focus, the more structure you can impose on the problem, and the more you can say about its solution.  There is a trade-off, of course: the more you narrow the focus, the more problems you exclude from you discussion.  Ideally, then, we want to limit ourselves to a field narrow enough that we can say a lot about the answer, and wide enough that we can apply it to a lot of problems.

Mathematicians learned a long time ago that it’s usually easiest to narrow the field a lot, learn what you can in that limited environment, and then see if the properties you discover there can be generalized to apply to the larger field.  The smallest environment is a single, small example.  Then come clusters of related examples, then a general model for these simple examples, and so on to greater and greater generality. We’ll roughly follow this evolution, working with a particular example, but trying to use it to gain insight into a whole class of problems.

So—we want to look at a mathematically simple family of optimization problems.  How simple can we make it?  Well, the simplest way to combine variables into mathematical expressions is through  XE "linear combination" linear combinations.  That is, every expression has to look like the sum (or difference) of a bunch of terms, and each term is simply a variable times a number, or a number itself.  

Linear:






Not Linear:
2x + 7y + 5
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Equations involving only linear expressions—linear XE "linear:equation"  equations--are nice because their graphs don’t bend, kink, jump, or wiggle in space—they are “flat”.  In two dimensions, linear equations graph as straight lines; in three dimensions, they graph as planes.

A brief interruption, here.  I’ve just defined a term (linear expression), and given you three examples of expressions that are linear and three expressions that are not.  Any time an example is given in this text, you want to be totally certain that the example jibes with the text it is meant to demonstrate.  Never skip examples!  Why, for instance, is y/2 a linear expression and 2/y a nonlinear one?
We’ll make our lives easier by looking only at problems with linear objective functions and linear constraints.  Optimization programs that meet this condition are called, sensibly enough, XE "linear program"  linear programs.  In truth, the linearity 
requirement narrows the field of optimization problems dramatically.  A general mathematical optimization program might be thought of as the task of finding the highest point on your property in the mountains.  The linearly restriction would limit you to finding the highest point on properties for which all of the property boundaries are straight lines, because the constraints have to be linear.  Moreover, within that property, the mountain would have to be completely flat, like the side of a pyramid.  This is because we need a linear objective function—here, height.  You shouldn’t have any trouble seeing that in this case, the highest point on your “tilted tabletop” property must lie on one of its corners.
 

It might seem that linear programs are too simple to be of much interest or use.  Happily, this is not the case—we’ll find lots of problems that are mathematically equivalent to finding the highest point in a crystal-faceted region of n-dimensional space, and we’ll be able to solve such problems without having to even visualize the geometry of the situation.  Even better, the techniques, tricks, perspectives, and intuition that we develop in studying linear programs will often generalize to less restricted models.  What we learn about linear programming will often apply to integer programming, dynamic programming, and other forms of mathematical programming as well.  The effort you expend on LPs (linear programs) will therefore serve you several-fold.

Before we set to work on linear programs, though, let’s make sure you’re prepared for the journey.  I will be assuming that you have the rudiments of algebra at your fingertips.  Past experience has shown, though, that the basic algebra knowledge of many 291 students is a bit rusty.  If you have this weakness, it is your job to address it NOW.  You have about a week to brush up on your basic algebra skills.  I’ve created an “absolute minimum” checklist of skills you’ll need in this course—see below.  If you do not remember how do to any of the items on the list, crack your algebra book and review.  If you still have problems, come and see me.  Algebra will not go away—lock it down now!

 XE "algebra skills checklist" Essential Algebra Skills Checklist for IDS 291

Solving a linear equation with only one variable for that variable.

Solving a linear equation with two variables for one of those variables.

Solving two linear equations in two variables simultaneously to find their common solution.

Graphing linear equations in two variables.
Graphing linear inequalities in two variables. 

Understanding the ideas of slope, x-intercept, and y-intercept for linear equations.

Understanding what it means to say that an equation or inequality is satisfied by a set of values for its variables.

Understanding what it means to say that a certain line is the graph of a linear equation.

[If you’re not sure if you remember this stuff or not, take the remedial quiz on the next page.]

Some remedial quiz answers:  

1.  x = -11/2
2. x = -5/2 y + 1     3. x = 5, y = -1.     4.  The line through (1,2) and the origin.  

5.  The line through (3,4) and the origin, and everything below that line.    6.  No.  Yes.     9.  c=0.

A Remedial Quiz on Important Algebra Skills

1.  Solve the equation 4x + 7 = 2x - 4 for x.  

2.  Solve the equation 3x + 4y = x - y + 2 for x.

3.  Suppose 2x + y = 9 and 3x + 4y = 11.  What are x and y?  Validate your solution.  That is, plug the values back into the two equations and verify that they work.

4.  Graph 2x - y = 0.

5.  Graph 5x - y > x + 2y.

6.  Does x = 2, y = 2 satisfy the equation in problem 4?  Does it satisfy the inequality in problem 5?

7.  Draw a rough sketch of three lines, each with x-intercept 3.  Their slopes should be -2, 0, and 3.

8.  Draw a rough sketch of three lines, each with y-intercept -1.  Their slopes should be ½, 1, and 2.

9.  I have a particular linear equation:  ax + by + c = 0.  Here, a, b, and c are numbers, but I’m not telling you what they are.  I will tell you that my line goes though the origin.  What can you tell me about a, b, or c?
Selected answers to the quiz appear on the bottom of the previous page.

Oh, one more thing.  When we get to Chapter 4, we’ll be using Excel to solve our linear programming problems.  Excel is part of Microsoft Office, and we’ll use its Solver add-in to find the best answers to linear programming problems.  I’ll be explaining how to do this in Chapter 4, but I’m going to be assuming that you already have basic Excel skills.  You’ll find a list of basic Excel skills on page 4-17 of this pamphlet.  If you’re rusty or shaky on these, you should get yourself up to speed with it before we get to Chapter 4.  Consider this to be a homework assignment.  Note that, if you aren’t reading this, you aren’t going to know about the homework assignment, are you?  So consider your reading this to be a good omen—your first success in the course!  If you need them, many easily read references exist to help you with Excel.  Let me know if you need help finding one.
  

You have one other “ongoing assignment”, as well.  Every chapter ends with review questions.  You are expected to orally answer the questions after you read the chapter.  These questions are designed to allow you to assess how much you’ve retained of what you’ve read.  If you can’t answer them without digging back through the chapter, you need to sharpen your reading skills.  Assess yourself!

Review Questions

R 1.1  An optimization problem can generally be decomposed into three “pieces”.  What are they?

R 1.2  Write a linear expression.  Write a nonlinear expression.

R 1.3  Define three measurable quantities that apply to you personally.  Note that, being measurable quantities, these definitions MUST start with “# of”, followed by a unit of measure.

R 1.4  Consider the goal “I want to waste as little time as possible while studying”.  State this goal by beginning with the word MAXIMIZE or MINIMIZE, and follow this word with the measurable quantity you wish to maximize or minimize.  This quantity will begin with the phrase “# of …”.  Do you have a choice of units?  In what sense, if any, does your choice of units make a difference?

R 1.5  Consider the constraint “I can’t spend more money than I have.”  Express this as a comparison between two measurable quantities. Both quantities will begin with the phrase “# of dollars…”.  (Hint:  One quantity is < the other.)  

Formulating Linear Programs

Our goal is to solve a certain class of problems, namely, those problems that can be written as linear programs.  Before we can solve them, of course, we have to create the linear programs themselves.  Creating a mathematical representation of a problem is called formulating the problem, and this chapter will concern itself only with that activity.  In Chapters 3 and 4, we’ll learn how to actually solve the programs that we create here; for now, we’re just trying to write them down!

The act of formulating a linear program is really an act of translation from one language to another.  You start with a problem that’s stated in English, and your job is to translate it into Math.  I mean this quite literally.  The best way to view mathematics for our work here is as a language.

So how do we bridge the gap between English and Math?  How do we translate a problem in English into its mathematical form?  The key is a particular kind of English phrase, called a measurable quantity.  Our mathematical expressions will always represents this special type of English phrase, and we’ll develop an easy way to take a measurable quantity in English and to write its mathematical equivalent.  So our general strategy is: Take the problem in normal English, reexpress it in terms of measurable quantities only, then translate these measurable quantities, one by one, into mathematics.

	Original English Formulation
	(
	Measurable Quantity Formulation
	(
	Mathematical Formulation


The chart above outlines how we do every single linear programming formulation problem.

Get this game plan in your head NOW, or you’ll lose the sense of what follows.
As the chart above suggests, you’re going to need to learn two things: how to translate from normal English to measurable quantities, and how to translate from measurable quantities to math.  I’m going to ask you to put the second of these projects on hold for now—I don’t want you writing math yet.  For a while, all I will want from you are measurable quantities.  

Key idea:  Measurable Quantity

A measurable quantity is any quantity of anything to which a numeric value can be affixed. 

 In English, measurable quantities always begin, “the number of (units) of…”.  

Make sure you have this idea absolutely clear in your mind.  Before you go on, state aloud at least three measurable quantities.  If you don’t begin with the words “number of…” followed by a unit of measure—well, thanks for playing.  Try again!  

Here are some examples of measurable quantities:  

	# of dollars of profit a firm makes
	# of hours of labor available



	# of orders a business receives


	# of dollars needed to buy your groceries

	# of pounds you lose on your diet


	# of grams of fat in a McNugget



	# of people waiting in a line (i.e., its length)


	# of credits required for graduation



	# of years you have been alive (i.e., your age)


	# of highway fatalities expected  this weekend


Note that they all start, as they must, with “# of”, followed by a unit of measure.  Get in the habit of thinking of the pieces of your problems you solve in this way.  Because everything—everything!—in a linear program is going to be a measurable quantity.  Every linear program has the goal of maximizing or minimizing some measurable quantity. Every linear program constraint says that one measurable quantity is less than or equal to another, or that two measurable quantities are equal.  In fact, to lay it out, here’s what every linear program looks like. XE "linear program:structure" 
Key idea: Structure of a Linear Program

Every linear program has the following structure:

Maximize (or Minimize) (measurable quantity)

subject to

(measurable quantity 1) < (measurable quantity 2)

(measurable quantity 3) < (measurable quantity 4)

     (                                  (
(measurable quantity n-1) < (measurable quantity n)

I’ve cheated just a little bit here, to keep the box above clear.  See those “<” signs?  Any or all of them could be “>” or “=”
.  Other than that, the structure above is completely general.  The first line, the objective, will be to maximize or minimize some measurable quantity.  Then comes “subject to”, which just means, “here come the constraints”.  After that, each constraint is just a comparison of the relative size of two measurable quantities. The key to success in formulating linear programs is becoming comfortable with measurable quantities.

Let’s see if we can apply this idea to a sample problem.

 XE "sample problems:Advisor-Bulletin" 
A First Example:  The Advisor-Bulletin Problem tc \l2 “A First Example:  The Publishing Problem 
A publishing firm produces two kinds of newspaper—the Advisor (A) and the Bulletin (B).  Papers are measured in batches (called bundles) of ten thousand papers each.  In order to print either paper, the firm needs to use paper, ink, and time on the printing machine.  (All other needed resources are abundant, and demand for the papers is unlimited.)  A bundle of the Advisor (that is, 10000 papers) clears a net profit of $3000, uses 3 hours of machine time to print, and requires 1 barrel of ink and 6 rolls of paper.  A bundle of the Bulletin clears a net profit of $5500, uses 5 hours of machine time to print, and requires 2 barrels of ink and 4 rolls of paper.  In a week, the firm has available a total of 40 hours of machine time, 15 barrels of ink, and 82 rolls of paper.  How many bundles of each newspaper should the firm publish to maximize net profits?  (You may assume the firm sells all the papers it makes.)

The information in the problem can be collected in a data table: 

	Advisor
	Bulletin
	Quantity Available
	

	3
	5
	40
	machine time (hours)

	1
	2
	15
	ink (barrels)

	6
	4
	82
	paper (rolls)

	3000
	5500
	--
	profit (dollars)

	per bundle
	per bundle
	per week
	


We can read directly from the table, for example, that we use 3 hours of machine time for 10000 Advisors (1 bundle of Advisor), and also use 1 barrel of ink and 6 rolls of paper, making a net profit of $3000 per 10000 Advisors. 

I want you to try your best to cast this problem into the linear program structure given in the box on the previous page.  Remember:  for now, measurable quantities only!  If you write a single number or variable in your answer, you are not doing what I’m asking!
  When you’ve finished, read on, as see how you did.
The goal is relatively easy: MAXIMIZE # of dollars of profit.  (Note that “# of dollars of profit” is a measurable quantity, while “profit” is not.  “# of cents profit”, of course, would be fine.)  There are three constraints, but they all impose the same kind of restriction: we can’t use more of a resource than we have available.  This is by far the most common kind of constraint, so common that we give it a special name: the limited resource constraint.  Happily, it’s not hard to express a limited resource constraint XE "constraint:limited resource"  in terms of measurable quantities.  Here’s how:

A limited resource constraint says, “You can’t use more (of something) than you have.”  

In terms of measurable quantities, this becomes  

# of units used  <  # of units available
If you haven’t already done so, try expressing the Advisor-Bulletin problem’s constraints in this language.  The answer is below.

Including the objective function with these constraints, I’m hoping you got:

Maximize # of $ of profit

subject to

# of hours of machine time used < # of hours of machine time available

# of barrels of ink used < # of barrels of ink available

# of rolls of paper used < # of rolls of paper available

Take some time to look at everything we’ve done so far.  There are some important points to note.

· So far, no math!

· Everything is in terms of measurable quantities.  (Everything starts “# of…”)

· Everything has units, as is required for measurable quantities.  Different constraints can have different units, but the two sides of any constraint have the same units. XE "constraint:units" 
· The constraints, written this way, “all look the same”.  They are all limited resource constraints.

We’re now done the first part of our formulation process: translating from normal English to measurable quantities.  What remains is the second step: translating from measurable quantities into mathematics.  And before we can do that, we’ll need variables.  You might be tempted to think that our variables will correspond to the measurable quantities in the program sketch above, but this is not so.   XE "decision variable" The variables (called the decision variables) will correspond to the measurable quantities in the problem over which we have direct control.  I hope you can see that in the current problem, the decision variables will be how many of each type of paper (Advisor and Bulletin) we decide to produce.

A = # of bundles of Advisor produced and sold
B = # of bundles of Bulletin produced and sold
Think about this.  Look at all the measurable quantities in the program sketch (shaded box) above.  Convince yourself  knowing the values of A and B would let you compute the numeric values of each of those measurable quantities
.  So by directly controlling how much of each newspaper we produce, we indirectly control all of the other measurable quantities in the program.  

Again, let’s note a few things here.  

· A and B really are decision variables—we get to pick (within a certain range) how many Advisors and Bulletins to print.  

· A and B are the only decision variables we really need for this problem.  If we know the number of bundles of Advisors and Bulletins printed, we’ll know how much ink, machine time, and paper are used and how much profit is generated.  Further, the original problem tells us the ink, machine time, and paper available.  These seven measurable quantities are the only quantities that we care about in this problem
.

· We used names for our variables that would help us remember what the variables stood for (A(Advisor, B(Bulletin).  This is a good idea.

· Since they are measurable quantities, each decision variable XE "decision variable:defining"  begins “# of (unit of measure)”. YOU MUST DEFINE ALL OF YOUR DECISION VARIABLES THIS WAY.  Knowing the units in which a quantity is measured is essential in all that follows
.

Okay, we’re all set for the final translation, from measurable quantities to math.  You might imagine that this is the worst part of our process, but it’s actually ridiculously easy.  We’ll feel our way along for a bit, to gain some insight, then lock everything down in a general procedure.  Let’s get to work.

We have seven measurable quantities to translate, as you can see from the shaded box in the middle of the previous page.  We can work with them in any order we please, but each has to be translated into a function of A and B, since these (and only these) are the only variables we’ve got!  In fact, since this is a linear program that we’re writing, the objective function has to be a linear function of A and B.  

To make sure you understand what this means, write down what a linear function of A and B, in general, would look like.  (Turn back to page 1-3 if you’ve lost the concept.)  Hopefully, you got was XE "linear expression" 
Any linear expression (linear function) in the variables A and B looks like:
___ A + ___ B + ___

where the three blanks are filled in with numbers (positive, negative, or zero).

Math texts usually write this as, for example, c​1A + c2B + c0, where c1, c2, and c3 are constants.  A constant is simply a number, and the constant that is multiplied by a variable is called the coefficient of that variable.  I’ve used blanks here instead of c1, c2 and c0 for two reasons.  First, it’s a bit clearer to the average student.  Second, we’ll soon be formulating the program by simply “filling in the blanks”.  

How can we do this?  You need to realize that each of our seven measurable quantities is going to turn into this same functional form of “___ A + ___ B + ___”.   They’ll differ only by what three numbers are put in the blanks.  When we’ve determined what those numbers should be for each measurable quantity, we’re done!

Before I tell you how to always get the right numbers, let’s work with one of our measurable quantities, to try to get a feel for what’s going on.  Think about the objective quantity:  # of dollars of profit.  Referring back to the data table, we see that each bundle of Advisor printed brings in a net profit of $3000.  That means that 1 bundle of Advisor yields $3000 profit, 2 bundles of Advisor yield 3000(2)= $6000 profit, and in general A bundles of Advisor will yield 3000 ( A = 3000 A dollars of profit.  Similarly, each bundle of Bulletin contributes $5500 to net profits.  Thus, the total net profit due to sales of the Bulletin is 5500 B dollars.  Since we are trying to maximize the total profit in dollars, we simply add these two terms to get the objective function.  Our goal is

MAXIMIZE             3000 A + 5500 B. 

                         (((((((((((((((((((((
  

     





        # of dollars of profit

       (Don’t proceed until this makes sense.)

Note that this is a linear expression in A and B.  The constant term is 0, and the coefficients of A and B are 3000 and 5500, respectively.  (See the bottom of the last page if you don’t understand this.)

We can spot-check this answer, of course, to see if it looks right.  This spot-checking is a kind of validation XE "validation"  of your work, and you should get in the habit of doing it, especially if you feel unsure about your answer.  For example, if we make 1 bundle of Advisors and 2 bundles of Bulletins, we ought to get $3000 from the Advisors and $11,000 from the Bulletins, giving us $14,000 profit total.  And plugging A = 1, B = 2 in the objective function above gives 3000(1) + 5500(2) = 14,000, just as it should.  Note, too, that if A = 0 and B = 0, the calculation above gives profit of $0, as it should.

You can probably continue, using the work above as a guide, and complete the Advisor-Bulletin formulation.  If you can, good.  But I’m going to look at what we’ve done a little differently, now, and use the work above to develop a way to find the coefficients in any linear program formulation problem.  

Take a look at the measurable quantity being translated above:  # of dollars profit.  What are the coefficients of A and B really telling you?  The answer is: the coefficient of A tells you how many dollars profit you get per unit of Advisor, and the coefficient of B tells you how many dollars profit you get per unit of Bulletin.  These phrases only make sense because every Advisor bundle gives you $3000 profit, and every Bulletin bundle gives you $5500 profit.  But this “every one of these gives you exactly so many of those” relationship is precisely what linear relations represent.  We now have three different ways to think of the concept of linearity, so let’s pull them together.

Key Idea:  Linearity

A mathematical expression is linear XE "linear expression"  if it consists of one or more terms separated by “+” or “-“ signs, and each term is either a number or a number times a variable.  Two linear expressions can be joined by a “=”, “<”, or “>” to make a linear relation.  XE "linear relation"  (Algebraic definition.)

A mathematical equation is linear XE "linear equation"  if it graphs as a straight line, flat plane, or hyperplane.  (Geometric definition.)

A mathematical relation between two measurable quantities is linear if a 1 unit change in the one quantity always results in the same, fixed amount of change in the other quantity.  (Measurable quantity definition.)

It’s this last definition that is going to let us translate from  XE "measurable quantity" measurable quantities to mathematics with ease.  Basically, it says that two quantities are linearly related if and only if each unit of one corresponds to a fixed amount of the other.  It’s like the dependence of your grocery bill on the number of TV Guides that you buy.  Regardless of what else may be in the cart, each additional TV Guide increases the bill by the same amount:  the cost of the TV Guide.  The Translation Rule on the next page shows how we can use this knowledge to write mathematical representations of measurable quantities.

To make things a bit easier to follow, I’ve included an example in the instruction box for the Translation Rule.  In this example, we have three decision variables:  X = # of hours that I work, Y = # of dollars that I borrow, and Z = # of tickets that I buy.  Presumably, these are the only activities in which I can engage.  My goal  is to translate the measurable quantity # of dollars that I have at the end of the day.  Let’s see how it works.

The Translation Rule is THE tool for writing linear programs.

You must master the technique presented on the following page!

How to Translate a Measurable Quantity into a Linear Expression:

The Translation Rule XE "translation rule" \b 

 
You need:  a set of decision variables, and 

            a measurable quantity that you want to express in terms of these decision variables

Preparation:  Write the general linear expression for these variables.  If the variables are X, Y, and Z, then you’d write __ X + __ Y + __ Z + __.  Translation means finding the numbers that belong in these blanks.

To fill in the blank in front of a variable (that is, to find the coefficient of the variable):

1. Determine what it means if this variable increases by 1.  Usually, this will mean that you have one more or get one more or use one more of something.  Be sure to express your answer in good English, including units.

Example:  If X is the number of hours that I work, then X increasing by 1 means that 

                       I work one more hour.  

2. Suppose that the change from step 1 does happen, and that all other decision variables remain unchanged.  Ask yourself:  By how much does the measurable quantity increase?  The answer will be a number, and this number is the coefficient X in the mathematical representation of the measurable quantity. 

Example:  If the measurable quantity is number of dollars that I have at the end of the day, then I want to

                 ask:  “If I work for one more hour, by how much do I increase the number of dollars that

                 I have?”  Clearly, this is the same as asking how much I am paid per hour.  If I’m paid

                 $10/hour, then the coefficient of X would be 10.

To fill in the constant term:

3. Imagine setting all of the decision variables equal to zero.  (In terms of the original problem, this usually means shutting everything down and doing nothing at all, but you need to think about what it means for your problem.)  Ask yourself:  What should the measurable quantity equal in this case?  The answer to this question is the constant term.  The constant term is often zero.

Example:   Recall what X, Y, and Z mean from the definitions on the previous page.    Setting these

                  to zero means that I don’t work, don’t borrow, and don’t buy any tickets.  In this case,

                  how much money do I have?  Precisely however much I started the problem with.  This

                  value (whatever it is) would be the constant term. 

This procedure is pretty straightforward.  Let’s see how it works on an example.  You should compare our procedure in the box above to the work we do now, step by step.  

You go to the grocery store and buy soup, bread, and some other stuff.  The “other stuff” costs you $50.  Soup costs 60 cents a can, and bread costs $1.05 a loaf.  We want to express your total food bill in terms of S = # of cans of soup bought and B = # of loaves of bread bought.  We’ll ignore tax for this example.

Note we have everything that we need to begin: our decision variables are properly defined, and our goal is to translate the measurable quantity # of dollars spent at the grocery store.  This means filling in the blanks in the expression __S + __ B + __.  We’ll start with the variable S.

Question:  If S increases by 1, what does this mean?  Answer:  You buy one more can of soup.  (Remember, almost always, increasing your variable by 1 will mean that you do (or get, or use) one more unit of something.)  So, if we do buy one additional can of soup, leaving all other variables (here, bread purchases) unchanged, what happens?  Specifically, what happens to the quantity that we’re trying to translate?

Question:  If we buy one more can of soup, by how much do we increase the # of dollars spent at the grocery store?  Note that the second half of this question is just the measurable quantity we wish to translate.  The answer is obvious, isn’t it?  Soup is 60 cents a can, so the dollars spent increases by 0.60.  This means the term 0.60 S is part of our mathematical translation; that is, that the number that goes in the blank in front of the S is just 0.60.

 XE "coefficient rule:example" Now we parallel this work with the variable B.  You should do this now.  Your work should lead you to this question: If I buy one more loaf of bread, by how much do I increase the number of dollars spent at the grocery store
?  Your answer is 1.05, and so 1.05 B is the next part of your mathematical translation.  We are told to add these.   So now, we have

0.60  S + 1.05 B  + __                 

((((((((((((((((((((((
# of dollars spent at the grocery store

There is one more step—finding the constant term.  We are told to set all decision variables equal to zero.  If S and B are zero, what does this mean?  Clearly, it means we buy no soup and no bread.  In this case, what should the # of dollars spent at the grocery store be?  Well, since we are told that the rest of our purchases total $50, the answer is simply 50, isn’t it?  This finishes our translation.  Hence

# of dollars spent at the grocery store = 0.60 S + 1.05 B + 50

What we’ve done here is really very simple, although I’ve labored through it to make sure it’s all clear.  Let’s try one more example, and this time we’ll go backwards.  I’ll give you the mathematical translation of the measurable quantity # of hours needed for activities before your date, and you’ll interpret all of the numbers that appear in it.  In this expression, DUST = # of rooms you must dust, WASH = # of cars you must wash, and SWEEP = # of rooms you must sweep.  The mathematical translation for the number of hours you need is

0.3 DUST + 0.75 WASH + 0.2 SWEEP + 1

     What do each of these numbers mean?  Interpret them now, then turn the page.

Here’s a kind of brief schematic of how we handle that 0.3 in front of DUST.




In other words, it takes 18 minutes (0.3 hours) to dust a room.   XE "coefficient rule:example" Note the importance of units in all of this.  If you haven’t already done so, please interpret the other three numbers in the example above before proceeding.

Hopefully, you got that it takes 45 minutes (0.75 hours) to wash a car and 12 minutes (0.2 hours) to sweep a room.  The constant term shows that you’ll need an additional 1-hour before your date as well—perhaps to clean up and get dressed.  Please notice what these numbers DO NOT say!  0.3 DUST does not mean that you dust 0.3 rooms!!!  This may sound really silly, but in a little while, I’m going to give you a problem, and I expect you to make precisely this error!  XE "common problems:coefficient rule" 

 XE "coefficient rule:common errors" \t "See common problems" 
Remember:  The coefficient of a variable always tells you how much of

the measurable quantity you get for each unit of the variable!  

It does NOT tell you the size of the variable itself!

Okay.  Back to the Advisor-Bulletin problem.  I want you to finish the translation from measurable quantities to math.  We’ve finished the objective function, so you have six more measurable quantities to translate into terms of A and B.  Do it now.  Start with the “measurable quantities formulation” on page 2-4, and apply the rules on page 2-8 to get the math.  When you’re done, compare your answer to the formulation below.

Maximize 3000 A + 5500 B 

subject to

3A + 5B < 40.       
(machine time constraint, in hours)

A + 2B < 15      

(ink constraint, in barrels) 

6A + 4B < 82   

(paper constraint, in rolls) 

When in doubt, validate!  That is, check your work by plugging in numbers.  For example, the work above says that if you make 1 bundle of Advisor and 1 bundle of Bulletin, then you make 3000(1) + 5500(1) = 11,000 dollars profit.  Further, it says you use 3(1) + 5(1) = 8 hours of machine time, 1 + 2(1) = 3 barrels of ink, and 6(1) + 4(1) rolls of paper.  And all of these are entirely correct, given our problem.  Note that in this problem, the constant term in every measurable quantity was zero.  This is a fairly common occurrence.

Are there any other constraints beside the three that we’ve named?  Actually, yes, although they are rather trifling.  We are forbidden to manufacture a negative number of papers, and so we also have the nonnegativity constraints  XE "constraint:nonnegativity" 
A > 0, B > 0.          (nonnegativity constraints) 

Nonnegativity constraints are also called trivial constraints XE "constraint:trivial" \b , and all other constraints are nontrivial.  Not every decision variable in every program has a nonnegativity constraint, but they are common enough that you should look for them before you finish and write them down if they apply.  Computers are going to be finding the best answers to our linear programs, and they cannot determine whether it is sensible for a variable to be negative!

Why We Need the Translation Rule:  Recipe Errors XE "recipe errors" 

 XE "common problems:recipe errors" 
The Translation Rule probably seems unnatural to you, and you may well have succeeded in formulating the Advisor-Bulletin problem without it.  I’m telling you, though, that your intuition is almost certain to fail you when you get to more complicated examples.  Try this one—and don’t read my answer until you’ve generated your own.

QUESTION:   XE "sample problems:Rocco Poultry" Rocco Poultry butchers chickens.  Each butchered chicken provides one breast, two legs, and two wings.  Let C be the number of chickens butchered, and let W, L, and B be the number of wings, legs, and breasts obtained from the butchering.  Write the constraint or constraints that relate these variables.

If you’re like most people, you’ll have come up with C = 2 W + 2 L + B; that is, “A chicken is two wings, two legs, and a breast.”  It sounds good, doesn’t it?  It’s dead wrong.  I call such an error a recipe error, because the constraint appears to provide the “recipe” for a chicken.  But there is no such thing as a recipe constraint.

To see this, we go back to one of our most important debugging tools—validation XE "validation" \b  XE "validation" .  If our constraint is right, then when we plug “correct” numbers into it, the constraint should work.  For example, if we butcher 1 chicken, we should get two wings, two legs, and one breast.  That is, C =1, W = 2, L = 2, and B = 1 should work in our constraint.  But does it?  Try it.  C = 2 W + 2 L + B becomes 1 = 2(2) + 2(2) + 1, or 1 = 5!    Clearly, this is wrong.  But how can such an “obviously correct” formulation be wrong?  What went wrong?

The answer is: practically everything.  Remember that each side of a constraint is a measurable quantity, and that both sides of a constraint are measured in the same units.  The left hand side of C = 2 W + 2 L + B is clearly measured in chickens, so the right hand side is in chickens as well.  The translation rule XE "coefficient rule"  then tells us that the coefficient of W is how many chickens we get if the number of wings is increased by one.
  That is, the “obvious” answer says that each wing—by itself—generates two chickens.  It also says that each leg generates two chickens and that each breast generates a chicken.  This is garbage—but tempting garbage.  If you don’t

 think about measurable quantities, it’s a temptation that you’ll probably succumb to.  Here are a few observations that can help you to avoid recipe errors.

· There is no such thing as a recipe constraint.  That is, any time you are trying to write a constraint that says “A something-or-other is made up of so many of this and so many of that”, you’re wrong.  No exceptions.  In fact, as soon as you say “A something is…”…you’re wrong.  Linear expressions always represent measurable quantities XE "measurable quantity" .  A chicken is not a measurable quantity.  You can quote me on that.

· In a linear expression like the one above, 2 W does not mean “two wings”.  The “2” is not an adjective, it’s a multiplier.  The W is not the English word “wings”, it’s a variable that represents a measurable quantity; that is, it’s a number.  2 W means “two times the number of wings”.  In light of the translation rule, this would mean “each additional wing generates two of whatever measurable quantity it is that the expression represents”.  In our constraint, both sides were counting chickens, so 2 W means “we get two chickens for each wing”.

 XE "linear program:formulating, step-by-step" Linear Programming Formulation, Step-By-Step

Let’s record the approach we just took for the Advisor-Bulletin Publishing problem, because it’s the same one we’ll use on all of our programs.

1.  Read and understand the problem.  For the first reading, ignore the numbers in the problem, just get a sense of what the problem is about, and what you are supposed to do.  On the second reading, again ignore numbers (you may wish to replace them with the words “so much” or “so many” as you read to keep them from distracting you), and focus on answering three questions.

· What is my goal?  (Maximize or minimize something.)

· What rules must I obey?  (What must I do?  What am I forbidden to do?)

· Over what quantities do I have direct control?

This is an “overview” step.  The better that you can answer these questions, the easier the rest of our procedure becomes.  Take your time!

2.   XE "measurable quantity" Translate the English problem into a problem about measurable quantities.  This requires you to rewrite the objective function as a measurable quantity, to rewrite every constraint as a relation between two measurable quantities, and to define each decision variable as a measurable quantity XE "measurable quantity" .  Note that in this step, we still are not using the numbers in the problem, and still are doing no math!  (If you have trouble performing this translation, the next section on overcoming obstacles should be a big help to you.)

3.  Translate the measurable quantity formulation from step 2 into a mathematical formulation by applying the translation rule XE "coefficient rule"  to “fill in the blanks” for each measurable quantity in the problem.  

4.  Check your answer to see if it makes sense.  Validate  by plugging  in numbers to make sure what you have written isn’t ridiculous.

Overcoming Obstacles in Formulation

Identifying the objective
 XE "objective function:identifying" A linear program has only one objective.  Look in the program to find the thing that you are trying to make as big as possible or as small as possible.  That’s it.  The most common place to find the objective is in the last sentence of the problem.  Although some of your text’s problems don’t explicitly tell you what the objective is, this isn’t good practice.  When in doubt, ask.  Generally, if it doesn’t say, your book will want you to either maximize profit or minimize cost.

Identifying constraints XE "constraint:identifying" 
Anything that you are required to do or forbidden to do is a constraint.  Consequently, the easiest way to identify constraints in your program is to look for words that imply such a compulsion.  Here are some common “constraint words”.   There are exceptions, of course, but these can be a big help.
Some words commonly indicating constraints:

	at least
	exactly
	demand

	at most
	budget
	limited

	no more than
	required
	restricted

	no less than
	must
	quota

	
	available
	


 XE "constraint:and measurable quantities" Every constraint, without exception, states a relation between two measurable quantities
.   XE "measurable quantity:and constraints" It either says that the two quantities are equal, or it says that the one quantity is < or > the other.  These two measurable quantities are measured in the same units XE "constraint:units" , and it will be essential that you express your program’s constraints in terms of measurable quantities before you attempt to translate them into mathematics.

The good news is that almost all of the constraints you’ll see in this course fall into one of three general families.  We’ve seen one such family: limited resource constraints.  The other two are quota constraints and conservation constraints.  For reference, here they are, all together, all expressed in terms of measurable quantities.  Learn these—they’ll guide your thinking as you formulate.

Conservation constraints may be the most difficult to get comfortable with, but they usually arise in problems involving inventory control, financial balances, or network flows.  For a network flow example, think about traffic at an intersection.  We expect a constraint like

# of cars entering intersection = # of cars leaving intersection

We’ll see that this kind of constraint appears in almost every network problem.

The Three Most Common Types of Constraints
A limited resource constraint  XE "constraint:limited resource" says, “You can’t use more (of something) than you have.”  

In terms of measurable quantities, this becomes  

# of (units) used  <  # of (units) available

 XE "constraint:quota" A quota constraint says, “You must meet (or exceed) the quota.”

In terms of measurable quantities, this becomes 

# of (units) obtained > # of (units) required
 XE "constraint:conservation" A conservation constraint says, “The books have to balance.”

In terms of measurable quantities, this becomes 

# of (units) going in = # of (units) going out

The last of these comes up most often in multiperiod XE "multiperiod"  or network XE "network"  problems.  For instance, # of units in initial inventory + # of units produced = # of units sold + # of units in ending inventory.  Limited resource constraints are by far the most common type of constraint you will encounter, with quota constraints making up most of what is left.  Note, too, that how you think of a constraint may change the category to which you assign it.  # of dollars spent < # of dollars available is a limited resource constraint, but # of dollars I earn > # of dollars of bills I owe is written as a quota constraint.  Mathematically, which view you take will make no difference.

There is one more common kind of constraint that we will encounter: the definition of an auxiliary variable.  We’ll talk about this one on page 2-19.

 XE "constraint:identifying" If you cannot find the constraints, here are a couple of tricks that may make your life easier:

· Especially in a MAXIMIZE program, ask yourself, “What prevents the decision variables from becoming arbitrarily large?”  (For example, in the publishing problem, what prevents us from making a billion Advisors?  Answer:  limitations on available machine time, ink, and paper.)

· Especially in a MINIMIZE program, ask yourself, “What prevents me from setting all of the decision variables to zero?”  (In our Advisor-Bulletin problem, there was nothing to prevent this; A = B = 0 was fine, although hardly desirable!)

In any program, assign “silly” values to the decision variables, and then decide why they are silly.  There must be at least one constraint that forbids each “silly” solution.  For example, if I had defined the variable INK_USED to be the number of barrels of ink used in the Advisor-Bulletin problem, then the “solution” A = 0, B = 0, INK_USED = 10 would be silly.  If we make no papers, we use none of our ink supply.

Identifying the decision variables XE "decision variable:identifying" 

tc \l2 “Identifying the Decision Variables
Here’s the short and sweet rule for decision variables:

There is one decision variable for each quantity over which you have DIRECT control.

When you’ve made up your decision variables, here’s the acid test for your list:

If your list of decision variables is complete, knowing the numerical values of those variables should tell you everything of relevance to the problem.  That is, given the variables’ values, you should be able to calculate the numeric value of every measurable quantity XE "measurable quantity"  in your problem.

In the Advisor-Bulletin problem, for example, we needed only two decision variables, and that is all that we used.  All of the measurable quantities in the problem could be cranked out if we knew the value of these two variables.  Further, we couldn’t get away with using fewer variables.  Knowing, for example, how many Advisors we make does not tell us how many Bulletins we produce.  We get to pick values for both of these quantities.

If you have trouble finding decision variables, the following procedure may be useful.  Start with any measurable quantity in the problem—say leftover ink.  What does it depend on?  On the amount of ink we use.  And what does that depend on?  On the number of Advisors and Bulletins we make.  What do these depend on?  Nothing—they are values that we set to please ourselves.  They may be limited by constraints, but their values are not determined exactly by them.  They are, therefore, decision variables.  By picking different relevant quantities in the problem, and repeatedly asking, “What does that depend on?”  You can generally flesh out a complete set of decision variables.  We keep asking the question until the answer is “nothing—we just pick ‘em”.

 There is one more trick for finding decision variables—an extremely useful rule of thumb.   Look at these sentences below:

· Each Advisor uses 3 hours of machine time, 1 barrel of ink, and 6 rolls of paper.

· Every hour spent studying math improves your quant score by 2 points and your math score by 5 points.

· You are paid 25 cents per mile to drive, and generate 2 points of wear on your car per mile.

Here’s the rule of thumb.  In your problem, look for sentences that say “Each X” or “Every X” does something.  The number of X is an excellent candidate for a decision variable.  Likewise, if a statement tells you that you get so much of something per unit of X, then the number of X is a likely choice for a decision variable.  This is a rule of thumb—it’s not guaranteed to work, but try it with the problems you have been assigned, and I think you’ll be pleasantly surprised!  Note that we might use different words in English to say the same thing.  I could say, for example, “To make an Advisor, we use 3 hours of machine time.”  It means the same thing as “We use 3 hours of machine time per Advisor.”
 XE "sample problems:Leggo Toys" A Second Example:  The Leggo Problem

The LEGGO Company (absolutely no relation to the Lego Company, by the way) sells building toys, and is currently selling two different kinds of building kits, Kit 1 and Kit 2.  LEGGO has found that it can save money by “modularizing” the kits that it sells.  It works like this.  LEGGO manufactures a specific collection of pieces, bags them together, and calls the result a packet.  A kit is made simply by collecting together the packets needed for that particular kit.  LEGGO makes two kinds of packets—the construction packet and the accessory packet.  Kit 1 consists of four construction packets and 1 accessory packet, and sells for $13.   Kit 2 consists of three construction packets and two accessory packets, and sells for $16.  Because of limited demand for LEGGO products in the marketplace, the total number of kits sold will not exceed 3000.  (You may assume that LEGGO will construct only those kits that it sells.)

To make a construction packet, LEGGO uses 50 grams of plastic, and incurs a cost of 20 cents.  To make an accessory packet, LEGGO uses 25 grams of plastic and 20 grams of steel.  An accessory packet costs 35 cents to produce.  (Neither of these packets may be sold directly.)  LEGGO may also buy construction packets from a third party supplier for 30 cents each.  LEGGO has available 100,000 grams of plastic and 50,000 grams of steel.  How should LEGGO conduct its purchasing and production if it wishes to maximize its profit?  

Formulation:

You first need to understand the problem, to get a handle on its goal, its constraints, and the quantities over which you have direct control.  It pays to be methodical about this.  Don’t rush headlong into math before you know what you want to say.

On your first reading, just skim through the problem to get a rough idea of what it is about, and what you are expected to do.  For this problem, I’d come out of that with something like:  “This toy company uses ingredients to make packets, then uses packets to make kits, then sells the kits.  They want to make as much profit as they can.”

On the second reading, read more carefully, but still ignore the numbers. Lock down your goal.  Try to identify the quantities over which you have direct control.  Figure out what restrictions the problem requires you to obey.  You may find it useful to draw a picture of how the pieces tie together, or to record the given information in a table.  For example, I might draw:







Unless you want to tabulate the values given, you really shouldn’t worry about the numerical values in the problem until our final step, when we translate from measurable quantities into Math.  

Now think about the problem a bit.  What’s the goal?  That’s easy:  maximize profit in dollars.  You could use cents for the unit instead, of course, but you must choose a unit of measure.  Now look for constraints.  Keep in mind the idea of a limited resource constraint (“you can’t use more than you have”) and a quota constraint (“you must get at least what you need”).  After thinking a bit, you should be able to say something like this: I can’t use more of anything than what’s available—that means plastic, steel, construction packets and accessory packets.  And I can’t sell more than 3000 kits all together, since there is limited demand.  All of these, as it happens, are limited resource constraints.  (A quota constraint would be, for example, that we had to manufacture at least 100 Kit 1’s.)  How about decision variables?  On your first reading, you might have a somewhat vague idea that you have control over how much you make of things:  kits, packets, whatever.  We’ll need to lock this down more later, but for now, let it go.  You have all that you need to write down the measurable quantity representation of your program.  

The goal, as we’ve already seen, is MAXIMIZE # of dollars profit.  The constraints all limited resource constraints, and limited resource constraints always say # of units used < # of units available XE "constraint:limited resource" .  For example, “You can’t use more plastic than you have” becomes # of grams of plastic used < # of grams of plastic available.  Try to write the measurable quantity representation of all of the remaining constraints.  Hopefully, you got
:  

Maximize # of $ of profit
subject to

# of grams of plastic used < # of grams of plastic available

# of grams of steel used < # of grams of steel available

# of construction packets used < # of construction packets available

# of accessory packets used < # of accessory packets available

# of kits sold < # of kits demanded

Note that I didn’t use the exact language of the limited resource constraint in the last—it is still a measurable quantity relation, but the terms here are easier to understand.  Also note that we always begin a measurable quantity with # of.  Never use “amount of” for a measurable quantity—“amount” sounds like a quantitative word, but it isn’t.

In light of our discussion, you shouldn’t have had too many problems finding these constraints, but if you did, you could use the suggestions in the last section (“Overcoming Obstacles”) to help you.  You’re told the amount of plastic and steel available, suggesting limited resource constraints on these two quantities.  You can also use the suggestion on the bottom of page 2-13 to look for constraints.  What keeps us from making an infinite number of kits, and hence an infinite amount of money?  Limited demand, for starters, and that’s a constraint.  But suppose the demand were unlimited.  Then we’d run out of accessory packets because we’d run out of steel.  These are two more constraints.  Once you realize that accessory packets are a limited resource, it’s not too great a leap to realize that construction packets are, too.

Okay, the program is now written in measurable quantity form, and now you need decision variables.  What do you directly control?  After the progress we’ve already made, the answer may be obvious to you.  If it isn’t, try our each/every/per trick..  We are told, “ To make a construction packet, LEGGO uses 50 grams of plastic, and incurs a cost of 20 cents.”  In other words, the cost is 20 cents per construction packet made, and each construction packet made uses 50 grams of plastic.  Both of these suggest that the number of construction packets made is a good candidate for a decision variable.  Reading through the rest of the problem in this way, you’ll find some other candidates, too:  # of accessory packets made, # of construction packets bought, # of Kit 1 made (and sold) and # of Kit 2 made (and sold)
.  This sounds like a pretty complete list.  Let’s give variable names to these quantities, and define them properly.  
CMAKE = # of construction packets made

CBUY = # of construction packets bought AMAKE = # of accessory packets made

KIT1 = # of units of kit 1 made and sold

KIT2      = # of units of kit 2 made and sold

A list of decision variables like this may have some problems.  You may have overlooked a variable that you need.  Conversely, you may have included some variables that you really don’t need.  Before we proceed, we’re going to check to see if either of these things are the case.

The most important check is determining that you have enough variables.  Here’s how to do this.  Imagine that you are given numerical values for each of your variables.  I don’t even care if your numerical values satisfy the requirements of your problem.  In your imagination, you may decide that you make 100 construction packets, buy 200 construction packets, make 300 accessory packets, make and sell 400 Kit 1s and make and sell 500 Kit 2s.  (These numbers are completely arbitrary and quite impossible for the current problem, but I don’t care.)  The question is this:  given these numeric values, could you figure out the numeric value of each measurable quantity in my formulation?  Let’s see.  Refer back to the shaded box on the previous page, which contains the measurable quantity formulation.

The first quantity is profit.  Can you find this?  Well, you know the total revenue you make from selling kits, since you know how many of each that you sell.  (Recall that you know the selling price of each kit from the problem itself.).  You also know your total costs, since you know how many packets of each type that you made and how many construction packets that you bought.  Revenue minus cost gives profit, so you can find profit.  So far, so good.  (Note that if you had used only one variable, KITS, for the number of kits made, you would have been in trouble.  You couldn’t compute the revenue without knowing what kind of kits were sold.)

Now proceed to the next measurable quantity, # of grams of plastic used.  Can you find this?  Certainly.  Plastic is only used when you make accessory packets or construction packets, and you know how many of each you make.  How about # of grams of plastic available?  In this problem, this is simply a number:  100,000.  No problems there.  Continuing in this way, convince yourself that you would be able to find numeric values for all of the measurable quantities in the formulation.   Since you can, you’re variable list is sufficient for this problem.  That’s great news!

But do you have any “extra” variables—variables that you don’t really need?  There is no harm in including such variables, which we call auxiliary variables, but there are a few things you need to keep in mind when you use them.  Because of this, we’ll postpone discussion of auxiliary variables until the next section.  For now, take it from me:  you have only the variables that you need.

Okay, you’re now ready for step 3 of our procedure on page 2-12—translating this measurable quantity formulation into a math formulation.  We do this by using the translation rule from page 2-8 XE "coefficient rule" .  Start with the objective function.  You know that the objective (like all of our measurable quantities) is going to be a linear function XE "expression:linear"  of the decision variable, so it will look like

 __ CMAKE + __ AMAKE + __ CBUY + __ KIT1 + __ KIT2 + __
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                       # of dollars of profit

Our job is to fill in the blanks.  By the translation rule, the number in front of a variable tells you how much # of dollars profit increases when the variable increases by 1.  If CMAKE goes up by 1, that means we make another construction packet
.  But that will reduce profit by 20 cents.  So the coefficient of CMAKE

 is -0.20.  The same logic applies for AMAKE and CBUY.  Try it now.  Now, how about KIT1?  Same question—if KIT1 increases by 1, what happens to # of dollars profit?  Well, increasing KIT1 by 1 means that we make and sell another kit 1
.  When that happens, profit climbs by $13.  So 13 is the coefficient of KIT1.  Now you do KIT2.  All that remains is the constant term.  The question is:  if all our decision variables are set equal to 0, what should the profit be?  All variables equaling zero in this problem means we produce and buy nothing.  In this case, our profit should be zero, so our constant term is zero.  Hence, the measurable quantity # of dollars profit becomes the linear expression

-0.20 CMAKE - 0.35 AMAKE - 0.30 CBUY + 13 KIT1 + 16 KIT2 + 0
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                       # of dollars of profit

Okay.  We have finished with one measurable quantity, and have 10 more to go—the two sides of our five constraints!  Some of these are trivial, since they are given in the problem as simply being numbers.  # of grams of plastic available = 100,000 and # of grams of steel available = 50,000.  Also, # of kits demanded = 3000.  But the other seven measurable quantities depend on the values of our variables, and are approached using the same “fill in the blank procedure” that you used on the profit.  The only difference from the work there is that the phrase # of $ profit will be replaced by a different measurable quantity; namely, whatever quantity you are trying to translate.  As one example, if you are translating # of grams of steel used, your first question is “If CMAKE goes up by 1, by how much does that increase the # of grams of steel used?”  Rephrasing:  “If I make another construction packet, how many grams of steel do I use?”  Answer:  none.  so the coefficient of CMAKE in the expression for # of grams of steel used is 0.  I’m asking you to continue like this, formulating the entire program that we created on page 2-16.  When you’ve finished, check your answer against my answer, below.

Maximize  -0.20 CMAKE - 0.35 AMAKE - 0.30 CBUY + 13 KIT1 + 16 KIT2

subject to

50 CMAKE + 25 AMAKE < 100,000

20 AMAKE < 50,000

4 KIT1 + 3 KIT2 < CMAKE + CBUY

KIT1 + 2 KIT2 < AMAKE

KIT1 + KIT2 < 3000

all variables > 0

Notice that I included the nonnegativity constraint XE "constraint:nonegativity" s at the end.  It does not make physical sense for any of these variables to take on negative values.  Go over this example carefully, and make sure you understand where everything is coming from.  The program above is the result of applying the translation rule to the measurable quantity formulation found on page  2-16.

When we’ve finished, it’s wise to do a reality check—to validate XE "validation"  our formulation.  Choose any numbers that you want for the variables (I’d avoid zero, since it can hide a problem in your program) and see if the numbers you compute in the expressions above are appropriate.  For example, if I make 10 construction packets and 20 accessory packets, the text indicates I should use 1000 grams of plastic.  This is because each construction packet uses 50 grams of plastic and each accessory packet uses 25 grams of plastic.  Plugging this into our expression for # of grams of plastic used gives 50(10) + 25(20) = 1000, just as it should.

Auxiliary Variable XE "variable:auxiliary" \t "See  auxiliary variable" s XE "auxiliary variable" 
In the preceding problem, we really needed all of the variables that we defined, because we truly did have direct control of each of them.  We were perfectly entitled, for example, to make a ton of packets, and then make no kits out of them at all.  This, of course, would be a stupid thing to do.   We are trying to maximize profit, and you can rest assured that when Excel finds the optimal solution to the program, it will use all of the accessory and construction packets we obtain.  

But suppose our original problem had been stated a bit differently.  Suppose it required that all accessory and construction packets be used.  Then, as soon as we knew how many of each kit we were going to make, we’d also know, exactly, how many accessory packets we make.  We’d also know how many construction packets would be obtained.  So knowing, for example, how many construction packets we buy would then determine exactly how many construction packets are made.  In other words, if we are required to have all accessory and construction packets used, our problem really only has three decision variables. You decide how many of Kit 1 and Kit 2 you make and how many construction packets you buy.  Those, in turn, determine how many of each type of packet you make, and those five together determine everything else.

So, with this “no waste” requirement, the program in the last section could be formulated with only three variables.  But would we want to do so?  Let me show you what it would look like:

Maximize -0.10 CBUY + 11.85 KIT1 + 14.7 KIT2

subject to

225 KIT1 + 200 KIT2 - 50 CBUY < 100,000

20 KIT1 + 40 KIT2 < 50,000

KIT1 + KIT2 < 3000

all variables > 0

Certainly, it’s shorter and has less variables than our old program.  Mathematically, it’s entirely equivalent to our formulation from the last section.  But it’s harder to understand, isn’t it?  The 11.85 in the objective function means that if you make a Kit 1 without buying construction packets, that you make $11.85 on it—but this profit is reduced by 10 cents for every construction packet that you buy.  In brief, it works, but it’s a mess
.  It’s much easier to think about—and write—the problem by including variables for the important quantities CMAKE and AMAKE—even though the other variables determine their values.  

We’re allowed to create such variables whenever we want, and we call such “nonessential” variables auxiliary variables.  There is only one rule that must be obeyed:

You may introduce an auxiliary XE "auxiliary variable:restrictions"  (“unnecessary”) variable into a program 

to represent any measurable quantity you wish

BUT

You must include an equality (“=”) constraint in your program, showing how this variable relates to the others in your program.

And, of course, you must define your auxiliaries along with the rest of your decision variables.  

For the modified (“no waste”) Leggo problem, the auxiliary variable formulation would simply be

Maximize  -0.20 CMAKE - 0.35 AMAKE - 0.30 CBUY + 13 KIT1 + 16 KIT2

subject to

50 CMAKE + 25 AMAKE < 100,000

20 AMAKE < 50,000

4 KIT1 + 3 KIT2 = CMAKE + CBUY

KIT1 + 2 KIT2 = AMAKE

KIT1 + KIT2 < 3000

all variables > 0

Note that it differs from the formulation of the last section only in the equality symbols in the third and fourth constraints.  Two auxiliary variables require two equality constraints to define them.

Since we’ve approached auxiliaries through a “back door” of a problem that you’ve already studied, you may be unsure of how to tell whether to use auxiliaries in a problem.  A good rule of thumb is:  XE "auxiliary variable:use" 
Use auxiliaries when there is a quantity in your problem that has these three properties.

(  
It is an important quantity (generally involved in more than one constraint)

( 
It can be computed if you know the value of all other decision variables       

(  
It is not trivial to calculate given the values of all other decision variables.   

You are never required to use auxiliaries, but they can make your life a lot easier.  One of the most useful applications of auxiliaries is in keeping a running total—bank balances and inventory levels XE "constraint:inventory"  are two classic examples.  If I know, for example, my initial inventory, my monthly sales and my monthly production, then my end-of-month inventory levels are completely determined—so they don’t need to be represented by variables in my linear program.  Nonetheless, since storage costs generally depends on inventory levels, and since future inventory levels always depend on current inventory levels, it’s generally very useful to have auxiliary variables to represent inventory levels.  The defining equations in an inventory control program tend to look something like

# of units in previous inventory + # of units made this period - # of units sold this period = end-of-period inventory
Those of you who are really paying attention will recognize this as a conservation constraint.

A Third example:  Computech XE "sample problems:Computech" 
To finish up, let me stop the narration, and run one example straight through.

Computech provides customer support to many computer users in the area.  Their business depends on timely response to their customers’ problems.  Their goal, therefore, is to process as many problem reports as possible each week.  For the E-KAT computer system, Computech has two qualified staff personnel:  Whitney and Dawn.  Whitney can process one report each hour, but Dawn works twice as fast.  The work is done in the E-KAT lab, where only one person at a time may work.  This lab can be used for up to 80 hours a week, but the cost of using the lab is $10 per hour. Computech is trying to decide how many hours per week Whitney and Dawn should work.

Whitney is the more senior staff member, and company policy therefore requires that she be given at least as many hours as Dawn receives.  Whitney has also made it clear she will not work more than 60 hours per week.  Whitney is well known to the Computech customers, and her hours are billable for more money than Dawn’s are.  In fact, the company makes $16 for every hour that Whitney works, and only $6 for every hour that Dawn works.  (These figures do not include the cost of keeping the lab open.)  While maximizing profit on the E-KAT system is not Computech’s primary goal at present, the company has decided that together Whitney and Dawn must cover the cost of the lab usage, and beyond that, generate a positive cash flow of at least $150 per week.  Formulate the linear program that will allow Computech to best accomplish their goals.

Solution:  

1. Read the problem and understand it.  (
2. Write the program in measurable quantity form.  (All quantities are per week.)

Maximize # of reports processed 
subject to

# of hours that the lab is used < # of hours that the lab is available

# of hours that Dawn works < # of hours that Whitney works

# of $ of cash flow generated by Dawn and Whitney > # of $ of cash flow required

# of hours that Whitney works < # of hours that Whitney is willing to work

Note that we have three limited resource constraints and one quota constraint.  After getting this far, I can see what my decision variables should be.  I can do this by logic or by invoking the each/every/per trick.

W = # of hours that Whitney works
D = # of hours that Dawn works

Knowing the numerical value of these two things would allow me to determine the value of every measurable quantity in the program above, so these are the only variables that I need.  If I wanted any other variables, they’d be auxiliaries, and the program would have to include equation constraints to define them.  For example, if I decided to define LAB = # of hours that the lab is in use, then I’d have to include the constraint LAB = W + D in my program.  I’ll work the problem without auxiliaries, since they don’t seem worthwhile to me in this case.

3.  Translate each measurable quantity into mathematics by using the translation rule XE "coefficient rule" .

	MAX     2 D + W
	Maximize # of reports processed

	  SUBJECT TO
	subject to

	      W + D <   80
	# of hours that the lab is used < # of lab hours available

	      D < W
	# of hours that Dawn works < # of hours that Whitney works

	      -4 D + 6 W >   150
	# of $ cash flow generated  > # of $ cash flow required

	      W <  60
	# of hours Whitney works < # of hours Whitney is willing to work

	   all variables > 0
	nonnegativity constraints


I’ve reproduced the measurable quantity formulation to the right of the program itself.  This is the same approach I’ll use when I write up the solutions to the homework.  Notice that there is a one to one correspondence between the measurable quantities and their mathematical translations.  Take the time to make sure that you see where everything comes from.  Most surprising, perhaps, is the –4 in the third constraint.  If Dawn works one more hour, she generates $6 of revenue, but she also generates $10 cost for keeping the lab open.  The result is that the firm loses $4 for each hour that Dawn works.

 XE "coefficient rule" Review Questions
Remember, you should answer the review questions orally whenever you finish a chapter in this pamphlet.  The actual homework problems appear in the back of this pamphlet, along with the solutions to those problems.  Answers are not provided to the review questions.  If you can’t answer one of them after reviewing your reading, ask about it in class.

R 2.1  Suppose you go on a trip, driving your car at a constant speed.  Let D = the # of miles you drive and T = the # of hours you drive.  Are D and T linearly related?  Is the assumption of constant speed necessary for your answer?

R 2.2  Suppose you go on a trip of 100 miles, driving at constant speed.  Let T = the # of hours you drive and R = the speed at which you drive in miles per hour.  Are T and R linearly related?  (Don’t guess! Use the definition of a linear relationship from the chapter!)

R 2.3  What do we mean by a measurable quantity?  What is wrong with a definition like A = Advisors?

R 2.4  What are the three most common types of constraints?  Express each as a relation between two measurable quantities.

R 2.5  Give a specific example of each of the three types of constraints, written in terms of measurable quantities.  (# of barrels of ink used < # of barrels of ink available would be one for a limited resource constraint, if I hadn’t already used it.)

R 2.6  I apply the translation rule to the problem of translating # of points scored on the quant test.  One of my variables is S = # of hours spent studying quant.  What question do I ask to find the coefficient of S?  Make sure your question is in plain, clear English.  Now assume that S is the only decision variable in this problem.  What question would the constant term in our mathematical expression answer?

R 2.7  Let Q = # of quarters in your pocket, D= # of dimes in your pocket, N = # of nickels in your pocket, and P = # of pennies in your pocket.  Assume that these are the only types of coins you have.  Assume that, in addition to these coins, you have $6 in bills.  Translate each of the following measurable quantities into linear expressions of Q, D, N, and P.

a)  # of dollars of money in your pocket (bills and change)

b)  # of cents of money in your pocket (bills and change)

c)  # of coins in your pocket
d)  # of dollars worth of quarters in your pocket
e)  # of quarters required to make $1
R 2.8  List five words or phrases which suggest the presence of a constraint.

R 2.9  What is the difference between an auxiliary variable and a “normal” decision variable?  What additional requirement must be met if an auxiliary is to be included in a program?
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� With a little coding, one can also make numerical quantities represent non-numeric ones, such as using 0 for FALSE and 1 for TRUE.  We’ll be doing this when we discuss integer variables.  


� We can also imagine a problem with multiple goals of varying importance.  Techniques to handle these, such as goal programming, are beyond the scope of this course.  If you’d like to know about them, ask!





� Sigh.  I try to avoid sexist usage, but English doesn’t make this easy.  When I must supply an (irrelevant) gender in a sentence, I’ll choose between male and female more or less randomly.


� In higher dimensions, linear relations graph as “hyperplanes”.  Think of “flat walls”, and don’t worry—I can’t visualize them, either.


� This observation is essentially equivalent to the Extreme Point Theorem of Linear Programming, which in turn gives rise to theorems about linear functionals on compact manifolds.  Here’s an example where narrowing the field gives you a handle on a more general idea.  Fancy name or not, the idea is pretty simple, isn’t it?


� Excel is useful for a great many business applications, and developing Excel competence is one of the goals of this course.





� Are you thinking, “How about > or <?”  If so, good question—but the answer is no, they aren’t allowed.  To see why, try to solve the problem of “Minimize x subject to the requirement that x > 0.”  Easy to find the best x, huh?  Now try it with “x > 0” rather than “x > 0”, and see what happens!  Fortunately, in real life, we never need the strict inequalities.  Less than or equal to, greater than or equal to, and equal to will do just fine.


� I won’t waste your time by repeatedly cajoling you to work through things like this.  I’ve worked hard to create these materials, and given a lot of thought about how to teach you this material as painlessly as possible.  I’m relying on your being sufficiently responsible for your own education that you’ll do your part.  The material that follows exercises like this will assume you’ve gained the insights the exercise will provide.  If you haven’t, you waste both of our times.  Please—your part is more than just running your eyes over the words!  


‘Nuff said.


� I’m assuming, of course, that you know the information provided in the problem itself!


� We’re assuming unlimited demand for the papers, so the number of papers made is the same as the number sold.  If this were not the case, we may decide we need more variables:  sale variables and production variables.  See why?


� If you still don’t believe that units are essential, please come over to my house this weekend and mow my lawn.  I’ll pay you 300 for it!


� Note that the second part of this question is identical to the second part of the question for S.  As long as we are translating a single measurable quantity, the end of our question is the same every time—it’s just the measurable quantity to be translated.  


� If, on the other hand, we had to “warm up” the machines for 1 hour, regardless of whether we printed any papers or not, the left hand side of the first constraint would have been 3A + 5B + 1.  See it?


� Look at the DUST example at the top of the last page to remind yourself how the translation rule works.


� Sometimes one side of a constraint might be expressed as a percentage of some measurable quantity.  For example, “30% of the # of dollars spent”.  In such cases, it’s easiest to think of “# of dollars spent” as the measurable quantity.  “30 percent of” translates mathematically into multiplying this measurable quantity by 0.30.� XE "constraint:percentage" �


� One is permitted to use more variables than one needs, but there is a price to pay for this.  See “auxiliary variables” on page 2-19 for more information.


� You may have wanted to say something like “we can’t make more kits than we have materials for”.  This sounds good at first, but you’ll have trouble expressing it in terms of measurable quantities.  The problem is that fuzzy word “materials”.  You’re talking about two different things when you use it—accessory packets and construction packets—and a constraint is always about one thing.  As a general rule, in a product mix problem, most of the constraints are about the resources, not about the finished products.  Decision variables, on the other hand, tend to be about the products.  Note that in this problem, packets are a product (of the first phase of production) and also a resource (for the second phase of production).


� Yes, you are limited in how many kits you can make and sell.   But recall what I mean when I say I have direct control of something.  I mean that, even when the all the other decisions in the problem have been made, I have some freedom of choice in that quantity’s value.  And here, I do.  


� Note the translation from math (CMAKE increases by 1) to English (we make one more construction packet).  Make sure you do this.  You need to be asking questions that make perfectly good sense to you.


� You might be tempted to try to account for the costs of the materials going into this Kit 1.  Don’t.  Remember that the translation rule assumes that all other variables are remaining unchanged.  You’ll accrue costs when you make or buy more packets, but not when you make and sell a kit.


� You’re not required to work out the correctness of this, but if you wanted to, it goes like this.  If I make another Kit 1, I generate $13 revenue.  But I use 4 construction packets and 1 accessory packet to do so, and since I’m not changing CBUY, all of these packets are made.  Making 4 construction packets costs 4(0.20) = $0.80, and making an accessory packet costs $0.35, so making another Kit 1 increases profit by $13 – 0.80 – 0.35 = $11.85.  On the other hand, if we buy one more construction packet without changing the kits being made, then we are making one less construction packet (no waste, remember?).  We therefore save 20 cents because we don’t make the packet, but spend 30 cents to buy the packet.  The result is that profit drops by 10 cents.


Who wants to do all of that figuring?
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