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Simulation is one of the most widely used quantitative approaches to decision making It
is a method for learning about a real system by experimenting with a model that represents
the system. The simulation model contains the mathematical expressions and logical rela-
tionships that describe how to compute the value of the outputs given the values of the in-
puts. Any simulation model has two inputs: controllable inputs and probabilistic inputs.
Figure 12.1 shows a conceptual diagram of a simulation model.

In conducting a simulation experiment, an analyst selects the value, or values, for the
controllable inputs. Then values for the probabilistic inputs are randomly generated. The
simulation model uses the values of the controllable inputs and the values of the proba-
bilistic inputs to compute the value, or values, of the output. By conducting a series of ex-
periments using a variety of values for the controllable inputs, the analyst learns how values
of the controllable inputs affect or change the output of the simulation model. After re-
viewing the simulation results, the analyst is often able to make decision recommendations
for the controllable inputs that will provide the desired output for the real system.

Simulation has been successfully applied in a variety of applications. The following
examples are typical.

1. New product development. The objective of this simulation is to determine the proba-
bility that a new product will be profitable. A model is developed relating profit (the out-
put measure) to various probabilistic inputs such as demand, parts cost, and labor cost.
The only controllable input is whether to introduce the product. A variety of possible
values will be generated for the probabilistic inputs, and the resulting profit will be com-
puted. We develop a simulation model for this type of application in Section 12.1.

2. Airline overbooking. The objective of this simulation is to determine the number
of reservations an airline should accept for a particular flight. A simulation model
is developed relating profit for the flight to a probabilistic input, the number of pas-
sengers with a reservation who show up and use their reservation, and a controllable
input, the number of reservations accepted for the flight. For each selected value for
the controllable input, a variety of possible values will be generated for the number
of passengers who show up, and the resulting profit can be computed. Similar simu-
lation models are applicable for hotel and car rental reservation systems.

3. Inventory policy. The objective of this simulation is to choose an inventory policy
that will provide good customer service at a reasonable cost. A model is developed
relating two output measures, total inventory cost and the service level, to proba-
bilistic inputs, such as product demand and delivery lead time from vendors, and
controllable inputs, such as the order quantity and the reorder point. For each setting
of the controllable inputs, a variety of possible values would be generated for the
probabilistic inputs, and the resulting cost and service levels would be computed.

4. Traffic flow. The objective of this simulation is to determine the effect of instnIling
a left turn signal on the flow of traffic through a busy intersection. A model is developed

FIGURE 12.1 DIAGRAM OF .X SIMULATION MODEL
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relating waiting time for vehicles to get through the intersection to probabilistic in..
puts such as the number of vehicle arrivals and the fraction that want to make a left
turn, and controllable inputs such as the length of time the left turn signal is on. For
each setting of the controllable inputs, values would be generated for the probabilistic
inputs, and the resulting vehicle waiting times would be computed.

5. Waiting lines. The objective of this simulation is to determine the waiting times
for customers at a bank's automated teller machine (ATM). A model is developed
relating customer waiting times to probabilistic inputs such as customer arrivals and
service times, and a controllable input, the number of ATM machines installed. For
each value of the controllable input (the number of ATM machines), a variety of val-
ues would be generated for the probabilistic inputs and the customer waiting times
would be computed. The Management Science in Action, Call Center Design, de-
scribes how simulation of a waiting line system at a call center helped the company
balance the service to its customers with the cost of agents providing the service.

Simulation is not an optimization technique. It is a method that can be used to describe
or predict how a system will operate given certain choices for the controllable inputs and
randomly generated values for the probabilistic inputs. Management scientists often use'
simulation to determine values for the controllable inputs that are likely to lead to desirable
system outputs. In this sense, simulation can be an effective tool in designing a system to
provide good performance.

MANAGEMENT SCIENCE IN ACTION

CALL CENTER DESIGN*

A call center is a place where large volumes of calls
are made to or received from current or potential
customers. More than 60,000 call centers operate in
the United States. Saltzman and Mehrotra describe
how a simulation model helped make a strategic
change in the design of the technical support call
center for a major software company. The applica-
tion used a waiting line simulation model to bal-
ance the service to customers calling for assistance
with the cost of agents providing the service.

Historically, the software company provided
free phone-in technical support, but over time ser-
vice requests grew to the point where 80% of the
callers were waiting between 5 and 10 minutes and
abandonment rates were too high. On some days
40% of the callers hung up before receiving ser-
vice. This service level was unacceptable. As a re-
sult, management considered instituting a Rapid
Program in which customers would pay a fee for
service, but would be guaranteed to receive ser-
vice within one minute, or the service would be
free. Nonpaying customers would continue re-
ceiving service but without a guarantee of short
service times.

A simulation model was developed to help un-
derstand the impact of this new program on the

waiting line characteristics of the call center. Data
available were used to develop the arrival distribu-
tion, the service time distribution, and the proba-
bility distribution for abandonment. The key design
variables considered were the number of agents
(channels) and the percentage of callers subscrib-
ing to the Rapid Program. The model was devel-
oped using the Arena simulation package.

The simulation results helped the company de-
cide to go ahead with the Rapid Program. Under
most of the scenarios considered, the simulatior
model showed that 95% of the callers in the Rapic
Program would receive service within one minut(
and that free service to the remaining customer
could be maintained within acceptable limits. Withii
nine months, 10% of the software company's cus
tomers subscribed to the Rapid Program, generatin:
$2 million in incremental revenue. The compan
viewed the simulation model as a vehicle for anti
gating risk. The model helped evaluate the likel
impact of the Rapid Program without experimen
ing with actual customers.

*Based on Robert M. Saltzman and Vijay Mehrotr
"A Call Center Uses Simulation to Drive Strateg
Change," Interfaces (May/June 2001): 87-101.
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In this chapter we begin by showing how simulation can be used to study the financial
risks associated with the development of a new product. We continue with illustrations
showing how simulation can be used to establish an effective inventory policy and how
simulation can be used to design waiting line systems. Other issues, such as verifying the
simulation program, validating the model, and selecting a simulation software package, are
discussed in Section 12.4.

12.1 RISK ANALYSIS

Risk analysis is the process of predicting the outcome of a decision in the face of uncer-
tainty. In this section, we describe a problem that involves considerable uncertainty: the de-
velopment of a new product. We first show how risk analysis can be conducted without
using simulation; then we show how a more comprehensive risk analysis can be conducted
with the aid of simulation.

PortaCom Project
PortaCom manufactures personal computers and related equipment. PortaCom's product
design group developed a prototype for a new high-quality portable printer. The new printer
features an innovative design and has the potential to capture a significant share of the
portable printer market. Preliminary marketing and financial analyses provided the follow-
ing selling price, first-year administrative cost, and first-year advertising cost.

Selling price = $249 per unit

Administrative cost = $400,000
Advertising cost =-- $600,000

In the simulation model for the PortaCom project, the preceding values are constants and
are referred to as parameters of the model.

The cost of direct labor, the cost of parts, and the first-year demand for the printer are
not known with certainty and are considered probabilistic inputs. At this stage of the plan-
ning process, PortaCom's best estimates of these inputs are $45 per unit for the direct
labor cost, $90 per unit for the parts cost, and 15,000 units for the first-year demand.
PortaCom would like an analysis of the first-year profit potential for the printer. Because
of PortaCom's tight cash flow situation, management is particularly concerned about the
potential for a loss.

What-If Analysis
One approach to risk analysis is called what-if analysis. A what-if analysis involves gen-
erating values for the probabilistic inputs (direct labor cost, parts cost, and first-year de-
mand) and computing the resulting value for the output (profit). With a selling price of
$249 per unit and administrative plus advertising costs equal to $400,000 + $600,000 =
$1,000,000, the PortaCom profit model is

Profit = ($249 — Direct labor cost per unit — Parts cost per unit)(Demand) — $1,000,000

Letting

c 1 = direct labor cost per unit

c 2 = parts cost per unit
x = first-year demand
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the profit model for the first year can be written as follows:

The PortaCom profit model can be depicted as shown in Figure 12.2.
Recall that PortaCom's best estimates of the direct labor cost per unit, the parts cost per

unit, and first-year demand are $45, $90, and 15,000 units, respectively. These values con-
stitute the base-case scenario for PoriaCom. Substituting these values into equation (12.1)
yields the following profit projection:

Profit (249 — 45 — 90)(15,000) — 1,000,000 = 710,000

Thus, the base-case scenario leads to an anticipated profit of $710,000.
In risk analysis we are concerned with both the probability of a loss and the magnitude

of a loss. Although the base-case scenario looks appealing, PortaCom might be interested
in what happens if the estimates of the direct labor cost per unit, parts cost per unit, and
first-year demand do not turn out to be as expected under the base-case scenario. For in-
stance, suppose that PortaCom believes that direct labor costs could range from $43 to $47
per unit, parts cost could range from $80 to $100 per unit, and first-year demand could range
from 1500 to 28,500 units. Using these ranges, what-if analysis can be used to evaluate a
worst-case scenario and a best-case scenario.

The worst-case value for the direct labor cost is $47 (the highest value), the worst-case
value for the parts cost is $100 (the highest value), and the worst-case value for demand is
1500 units (the lowest value). Thus, in the worst-case scenario, c i 47, c 2 = 100, and x =
1500. Substituting these values into equation (12.1) leads to the following profit projection:

Profit --= (249 — 47 — 100)(1500) — 1,000,000 = —847,000

The worst-case scenario leads to a projected loss of $847,000.
The best-case value for the direct labor cost is $43 (the lowest value), the best-case

value for the parts cost is $80 (the lowest value), and the best-case value for demand is
28,500 units (the highest value). Substituting these values into equation (12.1) leads to the
following profit projection:

Problem 2 will give you Profit --- (249 — 43 — 80)(28,500) — 1,000,000  2,591,000
practice using what-if
analysis. The best-case scenario leads to a projected profit of $2,591,000.

FIGURE 1 2.2 PORTACOM PROH I MODEL
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One advantage of

simulation is the ability to
use probability distributions
that are unique to the
system being studied

At this point the what-if analysis provides the conclusion that profits can range from a
loss of $847,000 to a profit of $2,591,000 with a base-case profit of $710,000. Although the
base-case profit of $710,000 is possible, the what-if analysis indicates that either a sub-
stantial loss or a substantial profit is possible. Other scenarios that PortaCom might want to
consider can also be evaluated. However, the difficulty with what-if analysis is that it does
not indicate the likelihood of the various profit or loss values. In particular, we do not know
anything about the probability of a loss.

Simulation

Using simulation to perform risk analysis for the PortaCom project is like playing out many
what-if scenarios by randomly generating values for the probabilistic inputs. The advantage
of simulation is that it allows us to assess the probability of a profit and the probability of
a loss.

Using the what-if approach to risk analysis, we selected values for the probabilistic in-
puts [direct labor cost per unit (c 1 ), parts cost per unit (c 2), and first-year demand (x)1, and
then computed the resulting profit. Applying simulation to the PortaCom project requires
generating values for the probabilistic inputs that are representative of what we might ob-
serve in practice. To generate such values, we must know the probability distribution for
each probabilistic input Further analysis by PortaCom led to the following probability dis-
tributions for the direct labor cost per unit, the parts cost per unit, and first-year demand:

Direct Labor Cost PortaCom believes that the direct labor cost will range from $43 to
$47 per unit and is described by the discrete probability distribution shown in Table 12.1.
Thus, we see a 0.1 probability that the direct labor cost will be $43 per unit, a 0.2 proba-
bility that the direct labor cost will be $44 per unit, and so on. The highest probability of
0.4 is associated with a direct labor cost of $45 per unit.

Parts Cost This cost depends upon the general economy, the overall demand for parts,
and the pricing policy of PortaCom's parts suppliers. PortaCom believes that the parts cost
will range from $80 to $100 per unit and is described by the uniform probability distribu-
tion shown in Figure 12.3. Costs per unit between $80 and $100 are equally likely.

First-Year Demand PortaCom believes that first-year demand is described by the nor-
mal probability distribution shown in Figure 12.4. The mean or expected value of first-year
demand is 15,000 units. The standard deviation of 4500 units describes the variability in the
first-year demand.

To simulate the PortaCom project, we must generate values for the three probabilistic
inputs and compute the resulting profit. Then we generate another set of values for the

TABLE 12.1 PROBABILITY DISTRIBUTION FOR DIRECT LABOR COST PER UNIT

Direct Labor Cost
per Unit Probability

$43 0.1
$44 0.2
$45 0.4
$46 0.2
$47 0.1
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FIGURE 12.3 UNIFORM PROBABILITY DISTRIBUTION FOR THE PARTS COST PER UNIT

TO

80 90 100

Parts Cost per Unit

A flowchart provides a
graphical representation
that helps describe the logic
of the simulation model.

probabilistic inputs, compute a second value for profit, and so on. We continue this process
until we are satisfied that enough trials have been conducted to describe the probability'
distribution for profit. This process of generating probabilistic inputs and computing the
value of the output is called simulation. The sequence of logical and mathematical opera-
tions required to conduct a simulation can be depicted with a flowchart. A flowchart for
the PortaCom simulation is shown in Figure 12.5.

Following the logic described by the . flowchart we see that the model parameters—
selling price, administrative cost, and advertising cost—are $249, $400,000, and $600,000,
respectively. These values will remain fixed throughout the simulation.

The next three blocks depict the generation of values for the probabilistic inputs. First,
a value for the direct labor cost (c 1 ) is generated. Then a value for the parts cost (c 2) is
generated, followed by a value for the first-year demand (x). These probabilistic input
values are combined using the profit model given by equation (12.1).

Profit (249 — c 1 — c 2)x — 1,000,000

The computation of profit completes one trial of the simulation. We then return to the block
where we generated the direct labor cost and begin another trial. This process is repeated
until a satisfactory number of trials has been generated.

FIGURE 12.4 NORMAL PROBABILITY DISTRIBUTION OF FIRST-YEAR DEMAND

15,000
Number of Units Sold
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FIGURE 1 2.5 FLOWCHART FOR THE PORTACOM SIMULATION
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Profit = (249 c — ,000,000

At the end of the simulation, output measures of interest can be developed. For ex-
ample, we will be interested in computing the average profit and the probability of a loss.
For the output measures to be meaningful, the values of the probabilistic inputs must be rep-
resentative of what is likely to happen when the PortaCom printer is introduced into the
market. An essential part of the simulation procedure is the ability to generate representa-
tive values for the probabilistic inputs. We now discuss how to generate these values.

Because random numbers
are equally likely,
management scientists can
assign ranges of random
numbers to corresponding
values of probabilistic
inputs so that the
probability of any input
value to the simulation
model is identical to the
Probability of its occurrence
in the real system.

Random Numbers and Generating Probabilistic Input Values In the PortaCom simu-
lation, representative values must be generated for the direct labor cost per unit (c 1 ), the
parts cost per unit (c 2), and the first-year demand (x). Random numbers and the probability
distributions associated with each probabilistic input are used to generate representative
values. To illustrate how to generate these values, we need to introduce the concept of computer-

generated random numbers.
Computer-generated random numbers' are randomly selected decimal numbers from 0

up to, but not including, 1. The computer-generated random numbers are equally likely and
are uniformly distributed over the interval from 0 to 1. Computer-generated random num-
bers can be obtained using built-in functions available in computer simulation packages and
spreadsheets. For instance, placing =RAND() in a cell of an Excel worksheet will result in
a random number between 0 and 1 being placed into that cell.

Table 12.2 contains 500 random numbers generated using Excel. These numbers can be
viewed as a random sample of 500 values from a uniform probability distribution over the
interval from 0 to 1. Let us show how random numbers can be used to generate values for
the PortaCom probability distributions. We begin by showing how to generate a value for
the direct labor cost per unit. The approach described is applicable for generating values
from any discrete probability distribution.

'Computer-generated random numbers are called pseudorandom numbers. Because they are generated through the use

of mathematical formulas, they are not technically random. The difference between random numbers and pseudorandom

numbers is primarily philosophical, and we use the term random numbers regardless of whether they are generated by a

computer
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TABLE 1 2.2 500 COMPUTER-GENERATED RANDOM NUMBERS
.011•111•11.

0.6953 0.5247 0.1368 0.9850 0.7467 0.3813 0.5827 0.7893 0.7169 0.8166
0.0082 0.9925 0.6874 0.2122 0.6885 0.2159 0.4299 0.3467 0.2186 0.1033
0.6799 0.1241 0.3056 0.5590 0.0423 0.6515 0.2750 0.8156 0.2871 0.4680
0.8898 0.1514 0.1826 0.0004 0.5259 0.2425 0.8421 0.9248 0.9155 0.9518
0.6515 0.5027 0.9290 0.5177 0.3134 0.9177 0.2605 0.6668 0.1167 0.7870
0.3976 0.7790 0.0035 0.0064 0.0441 0.3437 0.1248 0.5442 0.9800 0.1857
0.0642 0.4086 0.6078 0.2044 0.0484 0.4691 0.7058 0.8552 0.5029 0.3288
0.0377 0.5250 0.7774 0.2390 0.9121 0.5345 0.8178 0.8443 0.4154 0.2526
0.5739 0.5181 0.0234 0.7305 0.0376 0.5169 0.5679 0.5495 0.7872 0.5321
0.5827 0.0341 0.7482 0.6351 0.9146 0.4700 0.7869 0.1337 0.0702 0.4219
0.0508 0.7905 0.2932 0.4971 0.0225 0.4466 0.5118 0.1200 0.0200 0.5445
0.4757 0.1399 0.5668 0.9569 0.7255 0.4650 0.4084 0.3701 0.9446 0.8064
0.6805 0.9931 0.4166 0.1091 0.7730 0.0691 0.9411 0.3468 0.0014 0.7379
0.2603 0.7507 0.6414 0.9907 0.2699 0.4571 0.9254 0.2371 0.8664 0.9553
0.8143 0.7625 0.1708 0.1900 0.2781 0.2830 0.6877 0.0488 0.8635 0.3155
0.5681 0.7854 0.5016 0.9403 0.1078 0.5255 0.8727 0.3815 0.5541 0.9833
0.1501 0.9363 0.3858 0.3545 0.5448 0.0643 0.3167 0.6732 0.6283 0.2631
0.8806 0.7989 0.7484 0.8083 0.2701 0.5039 0.9439 0.1027 0.9677 0.4597
0.4582 0.7590 0.4393 0.4704 0.6903 0.3732 0.6587 0.8675 0.2905 0.3058
0.0785 0.1467 0.3880 0.5274 0.8723 0.7517 0.9905 0.8904 0.8177 0.6660
0.1158 0.6635 0.4992 0.9070 0.2975 0.5686 0.8495 0.1652 0.2039 0.2553
0.2762 0.7018 0.6782 0.4013 0.2224 0.4672 0.5753 0.6219 0.6871 0.9255
0.9382 0.6411 0.7984 0.0608 0.5945 0.3977 0.4570 0.9924 0.8398 0.8361
0.5102 0.7021 0.4353 0.3398 0.8038 0.2260 0.1250 0.1884 0.3432 0.1192
0.2354 0.7410 0.7089 0.2579 0.1358 0.8446 0.1648 0.3889 0.5620 0.6555
0.9082 0.7906 0.7589 0.8870 0.1189 0.7125 0.6324 0.1096 0.5155 0.3449
0.6936 0.0702 0.9716 0.0374 0.0683 0.2397 0.7753 0.2029 0.1464 0.8000
0.4042 0.8158 0.3623 0.6614 0.7954 0.7516 0.6518 0.3638 0.3107 0.2718
0.9410 0.2201 0.6348 0.0367 0.0311 0.0688 0.2346 0.3927 0.7327 0.9994
0.0917 0.2504 0.2878 0.1735 0.3872 0.6816 0.2731 0.3846 0.6621 0.8983
0.8532 0.4869 0.2685 0.6349 0.9364 0.3451 0.4998 0.2842 0.0643 0.6656
0.8980 0.0455 0.8314 0.8189 0.6783 0.8086 0.1386 0.4442 0.9941 0.6812
0.8412 0.8792 0.2025 0.9320 0.7656 0.3815 0.5302 0.8744 0.4584 0.3585
0.5688 0.8633 0.5818 0.0692 0.2543 0.5453 0.9955 0.1237 0.7535 0.5993
0.5006 0.1215 0.8102 0.1026 0.9251 0.6851 0.1559 0.1214 0.2628 0.9374
0.5748 0.4164 0.3427 0.2809 0.8064 0.5855 0.2229 0.2805 0.9139 0.9013
0.1100 0.0873 0.9407 0.8747 0.0496 0.4380 0.5847 0.4183 0.5929 0.4863
0.5802 0.7747 0.1285 0.0074 0.6252 0.7747 0.0112 0.3958 0.3285 0.5389
0.1019 0.6628 0.8998 0.1334 0.2798 0.7351 0.7330 0.6723 0.6924 0.3963
0.9909 0.8991 0.2298 0.2603 0.6921 0.5573 0.8191 0.0384 0.2954 0.0636
0.6292 0.4923 0.0276 0.6734 0.6562 0.4231 0.1980 0.6551 0.3716 0.0507
0.9430 0.2579 0.7933 0.0945 0.3192 0.3195 0.7772 0.4672 0.7070 0.5925
0.9938 0.7098 0.7964 0.7952 0.8947 0.1214 0.8454 0.8294 0.5394 0.9413
0.4690 0.1395 0.0930 0.3189 0.6972 0.7291 0.8513 0.9256 0.7478 0.8124
0.2028 0.3774 0.0485 0.7718 0.9656 0.2444 0.0304 0.1395 0.1577 0.8625
0.6141 0.4131 0.2006 0.2329 0.6182 0.5151 0.6300 0.9311 0.3837 0.7828
0.2757 0.8479 0.7880 0.8492 0.6859 0.8947 0.6246 0.1574 0.4936 0.8077
0.0561 0.0126 0.6531 0.0378 0.4975 0.1133 0.3572 0.0071 0.4555 0.7563
0.1419 0.4308 0.8073 0.4681 0.0481 0.2918 0.2975 0.0685 0.6384 0.0812
0.3125 0.0053 0.9209 0.9768 0.3584 0.0390 0.2161 0.6333 0.4391 0.6991
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TABLE 12.3 RANDOM NUMBER INTERVALS FOR GENERATING VALUES OF DIRECT
LABOR COST PER UNIT

Direct Labor Cost Interval of
per Unit Probability Random Numbers

$43 0.1 0.0 but less than 0 1
$44 0.2 0.1 but less than 0 3
$45 0.4 0.3 but less than 0 7
$46 0.2 0.7 but less than 0 9
$47 0.1 0.9 but less than 1 0

Try Problem 5 for an
opportunity to establish
intervals of random
numbers and simulate
demand from a discrete
probability distribution.

An interval of random numbers is assigned to each possible value of the direct labor
cost in such a fashion that the probability of generating a random number in the interval is
equal to the probability of the corresponding direct labor cost. Table 12.3 shows how this
process is done. The interval of random numbers greater than or equal to 0.0 but less than
0.1 is associated with a direct labor cost of $43, the interval of random numbers greater than
or equal to 0.1 but less than 0.3 is associated with a direct labor cost of $44, and so on. With
this assignment of random number intervals to the possible values of the direct labor cost,
the probability of generating a random dumber in any interval is equal to the probability of
obtaining the corresponding value for the direct labor cost. Thus, to select a value for the
direct labor cost, we generate a random number between 0 and 1. If the random number is
greater than or equal to 0.0 but less than 0.1, we set the direct labor cost equal to $43. If the
random number is greater than or equal to 0.1 but less than 0.3, we set the direct labor cost
equal to $44, and so on.

Each trial of the simulation requires a value for the direct labor cost. Suppose that on
the first trial the random number is 0.9109. From Table 12.3, the simulated value for the di-
rect labor cost is $47 per unit. Suppose that on the second trial the random number is 0.2841.
From Table 12.3, the simulated value for the direct labor cost is $44 per unit. Table 12.4
shows the results obtained for the first 10 simulation trials.

Each trial in the simulation requires a value of the direct labor cost, parts cost, and first-
year demand. Let us now turn to the issue of generating values for the parts cost. The proba-
bility distribution for the parts cost per unit is the uniform distribution shown in Figure 12.3.
Because this random variable has a different probability distribution than direct labor cost,
we use random numbers in a slightly different way to generate values for parts cost. With

TABLE 12.4 RANDOM GENERATION OF 10 VALUES FOR THE DIRECT LABOR COST
PER UNIT

Trial Random Number Direct Labor Cost ($)

1 0.9109 47
2 0.2841 44
3 0.6531 45
4 0.0367 43
5 0.3451 45
6 0.2757 44
7 0.6859 45
8 0.6246 45
9 0.4936 45

10 0.8077 46
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Spreadsheet packages such
as Excel have built-in
functions that make
simulations based on
probability distributions
such as the normal
probability distribution
relatively easy.

a uniform probability distribution, the following relationship between the random number
and the associated value of the parts cost is used.

where

r = random number between 0 and 1

a = smallest value for parts cost

b = largest value for parts cost

For PortaCom, the smallest value for the parts cost is $80, and the largest value is $100.
Applying equation (12.2) with a = 80 and b = 100 leads to the following formula for gen-
erating the parts cost given a random number, r.

Parts cost = 80 + (100 - 80) = 80 + r20 (12.3)

Equation (12.3) generates a value for the parts cost. Suppose that a random number of
0.2680 is obtained. The value for the parts cost is

Parts cost = 80 + 0.2680(20) = 85.36 per unit

Suppose that a random number of 0.5842 is generated on the next trial. The value for
the parts cost is

Parts cost = 80 + 0.5842(20) = 91.68 per unit

With appropriate choices of a and b, equation (12.2) can be used to generate values for any
uniform probability distribution. Table 12.5 shows the generation of 10 values for the parts
cost per unit.

Finally, we need a random number procedure for generating the first-year demand. Be-
cause first-year demand is normally distributed with a mean of 15,000 units and a standard
deviation of 4500 units (see Figure 12.4), we need a procedure for generating random values

TABLE 12.5 RANDOM GENERATION OF 10 VALUES FOR THE PARTS COST PER UNIT

Trial Random Number Parts Cost ($)
1 0.2680 85.36
2 0.5842 91.68
3 0.6675 93.35
4 0.9280 98.56
5 0.4180 88.36
6 0.7342 94.68
7 0.4325 88.65
8 0.1186 82.37
9 0.6944 93.89

10 0.7869 95.74
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from a normal probability distribution. Because of the mathematical complexity, a detailed
discussion of the procedure for generating random values from a normal probability distri-
bution is omitted. However, computer simulation packages and spreadsheets include a
built-in function that provides randomly generated values from a normal probability distri-
bution. In most cases the user only needs to provide the mean and standard deviation of the
normal distribution. For example, using Excel the following formula can be placed into a
cell to obtain a value for a probabilistic input that is normally distributed:

=NORMINV(RAND(),Mean,Standard Deviation)

Because the mean for the first-year demand in the PortaCom problem is 15,000 and the
standard deviation is 4500, the Excel statement

=NORMINV(RAND(),15000,4500) 12.4)

will provide a normally distributed value for first-year demand. For example, if Excel's
RAND() function generates the random number 0.7005, the Excel function shown in equa-
tion (12.4) will provide a first-year demand of 17,366 units. If RAND() generates the ran-
dom number 0.3204, equation (12.4) will provide a first-year demand of 12,900. Table 12.6
shows the results for the first 10 randomly generated values for demand. Note that random
numbers less than 0 5 generate first-year demand values below the mean and that random
numbers greater than 0.5 generate first-year demand values greater than the mean.

Running the Simulation Model Running the simulation model means implementing the
sequence of logical and mathematical operations described in the flowchart in Figure 12.5.
The model parameters are $249 per unit for the selling price, $400,000 for the administra-
tive cost, and $600,000 for the advertising cost. Each trial in the simulation involves ran-
domly generating values for the probabilistic inputs (direct labor cost, parts cost, and
first-year demand) and computing profit. The simulation is complete when a satisfactory
number of trials have been conducted.

Let us compute the profit for the first trial assuming the following probabilistic inputs:

Direct labor cost: c = 47
Parts cost: C

2 
= 85 . 36

First-year demand: x -= 17,366

TABLE 12.6 RANDOM GENERATION OF 10 VALUES FOR FIRST-YEAR DEMAND

Random Number Demand
0.7005 17,366
0.3204 12,900
0.8968 20,686
0.1804 10,888

5 0.4346 14,259
6 0.9605 22,904
7 0.5646 15,732
8 0.7334 17,804
9 0.0216 5,902

10 0.3218 12,918
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TABLE 1 2.7 PORTACOM SIMULATION RESULTS FOR 10 TRIALS

Trial

Direct
Labor Cost
per Unit ($)

Parts Cost
per Unit ($) Units Sold Profit ($)

1 47 85.36 17,366 1,025,570
2 44 91.68 12,900 461,828
3 45 93.35 20,686 1,288,906
4 43 '98.56 10,888 169,807
5 45 88.36 14,259 648,911
6 44 94.68 22,904 1,526,769
7 45 88.65 15,732 814,686
8 45 82.37 17,804 1,165,501
9 45 93.89 5,902 —350,131

10 46 95.74 12,918 385,585
—
449 912.64 151,359 7,137,432Total

Average $44.90 $91.26 15,136 $713,743

Referring to the flowchart in Figure 12.S, we see that the profit obtained is

Profit = (249 — c 1 — c2)x — 1,000,000

=-- (249 — 47 — 85.36)17,366 — 1,000,000 = 1,025,570

The first row of Table 12.7 shows the result of this trial of the PortaCom simulation.
The simulated profit for the PortaCom printer if the direct labor cost is $47 per unit, the

parts cost is $85.36 per unit, and first-year demand is 17,366 units is $1,025,570. Of course,
one simulation trial does not provide a complete understanding of the possible profit and
loss. Because other values are possible for the probabilistic inputs, we can benefit from
additional simulation trials.

Suppose that on a second simulation trial, random numbers of 0.2841, 0.5842, and
0.3204 are generated for the direct labor cost, the parts cost, and first-year demand, re-
spectively. These random numbers will provide the probabilistic inputs of $44 for the di-
rect labor cost, $91.68 for the parts cost, and 12,900 for first-year demand. These values
provide a simulated profit of $461,828 on the second simulation trial (see the second row
of Table 12.7).

Repetition of the simulation process with different values for the probabilistic inputs is
an essential part of any simulation. Through the repeated trials, management will begin to
understand what might happen when the product is introduced into the real world. We have
shown the results of 10 simulation trials in Table 12.7. For these 10 cases, we find a profit as
high as $1,526,769 for the 6th trial and a loss of $350,131 for the 9th trial. Thus, we see both
the possibility of a profit and of a loss. Averages for the 10 trials are presented at the bot-
tom of the table. We see that the average profit for the 10 trials is $713,743. The probability
of a loss is 0.10, because one of the 10 trials (the 9th) resulted in a loss. We note also that
the average values for labor cost, parts cost, and first-year demand are fairly close to their
means of $45, $90, and 15,000, respectively.

Simulation of the PortaCom Project

Using an Excel worksheet, we simulated the PortaCom project 500 times. The worksheet
used to carry out the simulation is shown in Figure 12.6. Note that the simulation results for
trials 6 through 495 have been hidden so that the results can be shown in a reasonably sized
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FIGURE 12.6 EXCEL WORKSHEET SIMULATION FOR THE PORTACOM PROJECT

,
PortaCom Risk Analysis

Selling Price per Unit $249
Administrative Cost $400,000
Advertising Cost $600,000

I
Direct Labor Cost Parts Cost (Uniform Distribution)

Lower Upper Smallest Value $80
Random No. Random No. Cost per Unit Largest Value $100

" 10 0.0 0.1 $43
0.1 0.3 $44
0.3 0.7 $45 Demand (Normal Distribution)

13 0.7 0.9 $46 Mean 15000
14 0.9 1.0 $47 Std Deviation 4500
15

17 Simulation Trials
:18
F Direct Labor Parts First-Year

. Trial Cost per Unit Cost per Unit Demand Profit
21 ., 1 47 $85.36 17,366 $1,025,570
2 2 44 $91.68 12,900 $461,828

3 45 $93.35 20,686 $1,288,906
4 43 $98.56 10,888 $169,807

25 . . 45 $88.36 14,259 $648,911
516 496 44 $98.67 8,730 ($71,739)

• 517, 497 45 $94.38 19,257 $1,110,952
518 498 44 $90.85 14,920 $703,118
519 499 43 $90.37 13,471 $557,652
520 500 46 $92.50 18,614 $1,056,847
52,1
.522 Summary Statistics
523 Mean Profit t
524 Standard Deviation
525 Minimum Profit 1
526 Maximum Profit feinnerea.f--
527 Number of Losses ..1,.,

528 Probability of Loss - OA020
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For practice working
through a simulation
problem, try Problems 9
and 14.

figure. If desired, the rows for these trials can be shown and the simulation results displayed
for all 500 trials. The details of the Excel worksheet that provided the PortaCom simulation
are described in Appendix 12.1.

The simulation summary statistics in Figure 12.6 provide information about the risk as_
sociated with PortaCom's new printer. The worst result obtained in a simulation of 500 tri -

als is a loss of $785,234, and the best result is a profit of $2,367,058. The mean profit is
$698,457. Fifty-one of the trials resulted in a loss; thus, the estimated probability of a loss
is 51/500 = 0.1020.

A histogram of simulated profit values is shown in Figure 12.7. We note that the distri-
bution of profit values is fairly symnietric with a large number of values in the range of
$250,000 to $1,250,000. The probability of a large loss or a large gain is small. Only 3 trials
resulted in a loss of more than $500,000, and only 3 trials resulted in a profit greater than
$2,000,000. However, the probability of a loss is significant. Forty-eight of the 500 trials re-
sulted in a loss in the $0 to $500,000 range—almost 10 percent. The modal category, the one
with the largest number of values, is the range of profits between $750,000 and $1,000,000.

In comparing the simulation approach to risk analysis to the what-if approach, we see
that much more information is obtained by using simulation. With the what-if analysis, we
learned that the base-case scenario projected a profit of $710,000. The worst-case scenario
projected a loss of $847,000, and the best-case scenario projected a profit of $2,591,000. From
the 500 trials of the simulation run, we see that the worst- and best-case scenarios, although
possible, are unlikely. None of the 500 trials provided a loss as low as the worst-case or a profit
as high as the best-case. Indeed, the advantage of simulation for risk analysis is the informa-
tion it provides on the likely values of the output. We now know the probability of a loss, how
the profit values are distributed over their range, and what profit values are most likely.

The simulation results help PortaCom's management better understand the profit/loss po-
tential of the PortaCom portable printer. The 0.1020 probability of a loss may be acceptable to
management given a probability of almost 0.80 (see Figure 12.7) that profit will exceed
$250,000. On the other hand, PortaCom might want to conduct further market research before
deciding whether to introduce the product. In any case, the simulation results should be help-
ful in reaching an appropriate decision. The Management Science in Action, Meeting Demand
Levels at Pfizer, describes how a simulation model helped find ways to meet increasing de-
mand for a product.

Excel worksheets for all
simulations presented in
this chapter are available
on the CD that
accompanies this text.

Simulation studies enable
an objective estimate of the
probability of a loss, which
is an important aspect of
risk analysis.

FIGURE 12.7 HISTOGRAM OF SIMULATED PROFIT FOR 500 TRIALS
OF THE PORTACOM SIMULATION
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MANAGEMENT SCIENCE IN ACTION

MEETING DEMAND LEVELS AT PFIZER*

Pharmacia & Upjohn's merger with Pfizer created
one of the world's largest pharmaceutical firms.
Demand for one of Pharmacia & Upjohn's long-
standing products remained stable for several years
at a level easily satisfied by the company's manu-
facturing facility. However, changes in market con-
ditions caused an increase in demand to a level
beyond the current capacity. A simulation model of
the production process was developed to explore
ways to increase production to meet the new level
of demand in a cost-effective manner.

Simulation results were used to help answer
the following questions:

• What is the maximum throughput of the
existing facility?

• How can the existing production process be
modified to increase throughput?

• How much equipment must be added to
the existing facility to meet the increased
demand?

• What is the desired size and configuration
of the new production process?

The simulation model was able to demonstrate
that the existing facilities, with some operating
policy improvements, were large enough to satisfy
the increased demand for the next several years.
Expansion to a new production facility was not
necessary. The simulation model also helped de-
termine the number of operators required as the
production level increased in the future. This re-
sult helped ensure that the proper number of oper-
ators would be trained by the time they were
needed. The simulation model also provided a way
reprocessed material could be used to replace fresh
raw materials, resulting in a savings of approxi-
mately $3 million per year.

*Based on information provided by David B. Magerlein,
James M. Magerlein, and Michael J. Goodrich.

NOTES AND COMMENTS

Appendix 12.2
shows how to
perform a
simulation of the
PortaCom
project using
Crystal Ball.

1. The PortaCom simulation model is based on in-
dependent trials in which the results for one trial
do not affect what happens in subsequent trials.
Historically, this type of simulation study was
referred to as a Monte Carlo. simulation. The
term Monte Carlo simulation was used because
early practitioners of simulation saw similarities
between the models they were developing and
the gambling games played in the casinos of
Monte Carlo. Today, many individuals interpret
the term Monte Carlo simulation more broadly
to mean any simulation that involves randomly
generating values for the probabilistic inputs.

2. The probability distribution used to generate
values for probabilistic inputs in a simulation
model is often developed using historical data.
For instance, suppose that an analysis of daily
sales at a new car dealership for the past 50 days
showed that on 2 days no cars were sold, on 5 days
one car was sold, on 9 days two cars were sold,
on 24 days three cars were sold, on 7 days four cars
were sold, and on 3 days five cars were sold. We
can estimate the probability distribution of daily

demand using the relative frequencies for the
observed data. An estimate of the probability
that no cars are sold on a given day is 2150 =
0.04, an estimate of the probability that one car
is sold is 5/50 = 0.10, and so on. The estimated
probability distribution of daily demand is shown
in the table below.

3. Spreadsheet add-in packages such as @RISK®
and Crystal Bale have been developed to make
spreadsheet simulation easier. For instance, us-
ing Crystal Ball we could simulate the Porta-
Com new product introduction by first entering
the formulas showing the relationships between
the probabilistic inputs and the output measure,
profit. Then, a probability distribution type is se-
lected for each probabilistic input from among a
number of available choices. Crystal Ball will
generate random values for each probabilistic
input, compute the profit, and repeat the simu-
lation for as many trials as specified. Graphical
displays and a variety of descriptive statistics
can be easily obtained.

Daily Sales 0 1 2 3 4 5

Probability 0.04 0.10 0.18 0.48 0.14 0.06



Gross profit -= $50D
Holding cost $15(Q D)

Net profit = Gross profit — Holding cost -= $50D — 15(Q —

Gross profit = $50Q
Shortage cost = $30(D Q)

Net profit = Gross profit — Shortage cost = $ 50Q — $30(D —

(12.6)
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12.2 INVENTORY SIMULATION

In this section we describe how simulation can be used to establish an inventory policy for
a product that has an uncertain demand. The product is a home ventilation fan distributed
by the Butler Electrical Supply Company. Each fan costs Butler $75 and sells for $125. Thus
Butler realizes a gross profit of $125 — $75 = $50 for each fan sold. Monthly demand for
the fan is described by a normal probability distribution with a mean of 100 units and a stan-
dard deviation of 20 units.

Butler receives monthly deliveries from its supplier and replenishes its inventory to a
level of Q at the beginning of each month. This beginning inventory level is referred to as
the replenishment level. If monthly demand is less than the replenishment level, an inven-
tory holding cost of $15 is charged for each unit that is not sold. However, if monthly de-
mand is greater than the replenishment level, a stock-out occurs and a shortage cost is
incurred. Because Butler assigns a goodwill cost of $30 for each customer turned away, a
shortage cost of $30 is charged for each unit of demand that cannot be satisfied. Manage-
ment would like to use a simulation model to determine the average monthly net profit
resulting from using a particular replenishment level. Management would also like infor-
mation on the percentage of total demand that will be satisfied. This percentage is referred
to as the service level.

The controllable input to the Butler simulation model is the replenishment level, Q. The
probabilistic input is the monthly demand, D. The two output measures are the average
monthly net profit and the service level. Computation of the service level requires that we
keep track of the number of fans sold each month and the total demand for fans for each
month. The service level will be computed at the end of the simulation run as the ratio of
total units sold to total demand. A diagram of the relationship between the inputs and the
outputs is shown in Figure 12.8.

When demand is less than or equal to the replenishment level (D Q), D units are sold,
and an inventory holding cost of $15 is incurred for each of the Q — D units that remain in
inventory. Net profit for this case is computed as follows:

Case 1: D Q

When demand is greater than the replenishment level (D> Q), Q fans are sold, and a short-
age cost of $30 is imposed for each of the D — Q units of demand not satisfied. Net  profit
for this case is computed as follows:

Case 2: D > Q

Figure 12.9 shows a flowchart that defines the sequence of logical and mathematical
operations required to simulate the Butler inventory system. Each trial in the simulation
represents one month of operation. The simulation is run for 300 months using a given
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FIGURE 12.8 BUTLER INVENTORY SIMULATION MODEL

Demand

FIGURE 12.9 FLOWCHART FOR THE BUTLER INVENTORY SIMULATION
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replenishment level, Q. Then the average profit and service level output measures are co..
puted. Let us describe the steps involved in the simulation by illustrating the results for the
first two months of a simulation run using a replenishment level of Q = 100.

The first block of the flowchart in Figure 12.9 sets the values of the model parameters:
gross profit = $50 per unit, holding cost = $15 per unit, and shortage cost = $30 per unit.
The next block shows that a replenishment level of Q is selected; in our illustration,
Q = 100. Then a value for monthly demand is generated. Because monthly demand is nor-
mally distributed with a mean of 100 units and a standard deviation of 20 units, we can use
the Excel function =NORMINV( • D (),100,20), as described in Section 12.1, to gener-
ate a value for monthly demand. Suppose that a value of D = 79 is generated on the first
trial. This value of demand is then compared with the replenishment level, Q. With the re-
plenishment level set at Q = 100, demand is less than the replenishment level, and the left
branch of the flowchart is followed. Sales are set equal to demand (79), and gross profit,
holding cost, and net profit are computed as follows:

Gross profit = 50D = 50(79) = 3950
Holding cost = 15(Q — D) = 15(100 — 79) = 315

Net profit = Gross profit — Holding cost = 3950 — 315 = 3635

The values of demand, sales, gross profif, holding cost, and net profit are recorded for the
first month. The first row of Table 12.8 summarizes the information for this first trial.

For the second month, suppose that a value of 111 is generated for monthly demand.
Because demand is greater than the replenishment level, the right branch of the flowchart
is followed. Sales are set equal to the replenishment level (100), and gross profit, shortage
cost, and net profit are computed as follows:

Gross profit = 50Q = 50(100) = 5000

Shortage cost = 30(D — Q) = 30(111 — 100) = 330

Net profit = Gross profit — Shortage cost = 5000 — 330 = 4670

The values of demand, sales, gross profit, holding cost, shortage cost, and net profit are
recorded for the second month. The second row of Table 12.8 summarizes the information
generated in the second trial.

Results for the first five months of the simulation are shown in Table 12.8. The totals
show an accumulated total net profit of $22,310, which is an average monthly net profit of
$22,310/5 = $4462. Total unit sales are 472, and total demand is 501. Thus, the service

TABLE 12.8 BUTLER INVENTORY SIMULATION RESULTS FOR FIVE TRIALS
WITH Q = 100

Month Demand Sales
Gross

Profit ($)
Holding
Cost ($)

Shortage
Cost ($)

Net
Profit ($)

1 79 79 3,950 315 0 3,635
2 111 100 5,000 0 330 4,670
3 93 93 4,650 105 0 4,545
4 100 100 5,000 0 0 5,000
5 118 100 5,000 0 540 4,460—

501
_
472 23,600 420 870 22,310Totals

Average 100 94 $4,720 $ 84 $174 $4,462
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EXCELfi le
Butler

level is 472/501 = 0.942, indicating Butler has been able to satisfy 94.2% of demand dur-
ing the five-month period.

Butler Inventory Simulation
Using Excel, we simulated the Butler inventory operation for 300 months. The worksheet
used to carry out the simulation is shown in Figure 12.10. Note that the simulation results
for months 6 through 295 have been hidden so that the results can be shown in a reasonably
sized figure. If desired, the rows for these months can be shown and the simulation results
displayed for all 300 months.

The summary statistics in Figure 12.10 show what can be anticipated over 300 months if
Butler operates its inventory system using a replenishment level of 100. The average net profit
is $4293 per month. Because 27,917 units of the total demand of 30,181 units were satisfied,

FIGURE 12.10 EXCEL WORKSHEET FOR THE BUTLER INVENTORY SIMULATION

Butler Inventory .

Gross Profit per Unit $50
Holding Cost per Unit $15
Shortage Cost per Unit $30

Replenishment Level 100

Demand (Normal Distribution)
.10 Mean 100

Std Deviation 20
'12

13
14 Simulation
15
16 Month Demand Sales Gross Profit Holding Cost Shortage Cost Net Profit
17 1 79 79 $3,950 $315 $0 $3,635
18 2 111 100 $5,000 $0 $330 $4,670
19 3 93 93 $4,650 $105 $0 $4,545
20 4 100 100 $5,000 $0 $0 $5,000
.21- 5 118 100 $5,000 $0 $540 $4,460
312 296 89 89 $4,450 $165 $0 $4,285
313 297 91 91 $4,550 $135 $0 $4,415
314 298 122 100 $5,000 $0 $660 $4,340
315 299 93 ' 93 $4,650 $105 $0 $4,545
316 300 126 100 $5,000 $0 $780 $4,220
.317:,
318 Totals 30,181 27,917 Summary Statistics
319 Mean Profit
320 Standard Deviation
321 Minim Profit
322. MaximurriProfit
323 Service Level I
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TABLE 12.9 BUTLER INVENTORY SIMULATION RESULTS FOR 300 TRIALS

Replenishment
Level

Average Net
Profit ($)

Service
Level (%)

100 4293 92.5
110 4524 96.5
120 4575 98.6
130 4519 99.6
140 '4399 99.9

Simulation allows the user
to consider different
operating policies and
changes to model
parameters and then to
observe the impact of the
changes on output
measures such as profit or
service level.

Problem 18 gives you a
chance to develop a
different simulation model.

the service level is 27,917/30,181 = 92.5%. We are now ready to use the simulation model to
consider other replenishment levels that may improve the net profit and the service level.

At this point, we conducted a series of simulation experiments by repeating the Butler in-
ventory simulation with replenishment levels of 110, 120, 130, and 140 units. The average
monthly net profits and the service levels are shown in Table 12.9. The highest monthly net
profit of $4575 occurs with a replenishment level of Q = 120. The associated service level is
98.6 percent. On the basis of these results, Butler selected a replenishment level of Q = 120.

Experimental simulation studies, such as this one for Butler's inventory policy, can help
identify good operating policies and decisions. Butler's management used simulation to
choose a replenishment level of 120 for its home ventilation fan. With the simulation model
in place, management can also explore the sensitivity of this decision to some of the model
parameters. For instance, we assigned a shortage cost of $30 for any customer demand not
met. With this shortage cost, the replenishment level was Q = 120 and the service level was
98.6%. If management felt a more appropriate shortage cost was $10 per unit, running the
simulation again using $10 as the shortage cost would be a simple matter.

We mentioned earlier that simulation is not an optimization technique. Even though we used
simulation to choose a replenishment level, it does not guarantee that this choice is optimal. All
possible replenishment levels were not tested. Perhaps a manager would like to consider addi-
tional simulation runs with replenishment levels of Q = 115 and Q 125 to search for an even
better inventory policy. Also, we have no guarantee that with another set of 300 randomly gen-
erated demand values that the replenishment level with the highest profit would not change.
However, with a large number of simulation trials, we should find a good and, at least, near
optimal solution. The Management Science in Action, Petroleum Distribution in the Gulf of
Mexico, describes a simulation application for 15 petroleum companies in the state of Florida.

MANAGEMENT SCIENCE IN ACTION

PETROLEUM DISTRIBUTION IN THE GULF OF MEXICO*

Domestic suppliers who operate oil refineries along
the Gulf Coast are helping to satisfy Florida's in-
creasing demand for refined petroleum products.
Barge fleets, operated either by independent ship-
ping companies or by the petroleum companies
themselves, are used to transport more than 20 dif-
ferent petroleum products to 15 Florida petroleum
companies. The petroleum products are loaded at
refineries in Texas, Louisiana, and Mississippi and
are discharged at tank terminals concentrated in
Tampa, Port Everglades, and Jacksonville.

Barges operate under three types of contracts
between the fleet operator and the client petroleum
company:

• The client assumes total control of a
barge and uses it for trips between its
own refinery and one or more discharging
ports.

• The client is guaranteed a certain volume
will be moved during the contract period.
Schedules vary considerably depending
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upon the customer's needs and the fleet
operator's capabilities.

• The client hires a barge for a single trip.

A simulation model was developed to analyze
the complex process of operating barge fleets in
the Gulf of Mexico. An appropriate probability
distribution was used to simulate requests for ship-
ments by the petroleum companies. Additional proba-
bility distributions were used to simulate the travel
times depending upon the size and type of barge.
Using this information, the simulation model was
used to track barge loading times, barge discharge
times, barge utilization, and total cost.

Analysts used simulation runs with a variety
of what-if scenarios to answer questions about
the petroleum distribution system and to make
recommendations for improving the efficiency of

the operation. Simulation helped determine the
following:

• The optimal trade-off between fleet utiliza-
tion and on-time delivery

• The recommended fleet size
• The recommended barge capacities
• The best service contract structure to bal-

ance the trade-off between customer ser-
vice and delivery cost

Implementation of the simulation-based rec-
ommendations demonstrated a significant im-
provement in the operation and a significant
lowering of petroleum distribution costs.

*Based on E. D. Chajakis, "Sophisticated Crude Trans-
portation," OR/MS Today (December 1997): 30-34.

12.3 WAITING LINE SIMULATION

The simulation models discussed thus far have been based on independent trials in which
the results for one trial do not affect what happens in subsequent trials. In this sense, the
system being modeled does not change or evolve over time. Simulation models such as
these are referred to as static simulation models. In this section, we develop a simulation
model of a waiting line system where the state of the system, including the number of cus-
tomers in the waiting line and whether the service facility is busy or idle, changes or evolves
over time. To incorporate time into the simulation model, we use a simulation clock to
record the time that each customer arrives for service as well as the time that each customer
completes service. Simulation models that must take into account how the system changes
or evolves over time are referred to as dynamic simulation models. In situations where the
arrivals and departures of customers are events that occur at discrete points in time, the simu-
lation model is also referred to as a discrete-event simulation model.

In Chapter 11, we presented formulas that could be used to compute the steady-state
operating characteristics of a waiting line, including the average waiting time, the average
number of units in the waiting line, the probability of waiting, and so on. In most cases, the
waiting line formulas were based on specific assumptions about the probability distribution
for arrivals, the probability distribution for service times, the queue discipline, and so on.
Simulation, as an alternative for studying waiting lines, is more flexible. In applications
where the assumptions required by the waiting line formulas are not reasonable, simulation
may be the only feasible approach to studying the waiting line system. In this section we
discuss the simulation of the waiting line for the Hammondsport Savings Bank automated
teller machine (ATM).

Hammondsport Savings Bank ATM Waiting Line

Hammondsport Savings Bank will open several new branch banks during the coming year.
Each new branch is designed to have one automated teller machine (ATM). A concern is
that during busy periods several customers may have to wait to use the ATM. This concern
prompted the bank to undertake a study of the ATM waiting line system. The bank's vice
president wants to determine whether one ATM will be sufficient. The bank established ser-
vice guidelines for its ATM system stating that the average customer waiting time for an
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ATM should be one minute or less. Let us show how a simulation model can be used to
study the ATM waiting line at a particular branch.

Customer Arrival Times

One probabilistic input to the ATM simulation model is the arrival times of customers who
use the ATM. In waiting line simulations, arrival times are determined by randomly gener-
ating the time between two successive arrivals, referred to as the interarrival time. For the
branch bank being studied, the customer interarrival times are assumed to be uniformly dis-
tributed between 0 and 5 minutes, as shown in Figure 12.11. With r denoting a random num-
ber between 0 and 1, an interarrival time for two successive customers can be simulated by
using the formula for generating values from a uniform probability distribution.

Interarrival time =- a + r(b — (12.7)

where

r = random number between 0 and 1

a = minimum interarrival time

b = maximum interarrival time

A uniform probability
distribution of interarrival
times is used here to
illustrate the simulation
computations. Actually, any
interarrival time probability
distribution can be
assumed, and the logic of
the waiting line simulation
model will not change.

For the Harrunondsport ATM system, the minimum interarrival time is a = 0 minutes, and
the maximum interarrival time is b 5 minutes; therefore, the formula for generating an
interarrival time is

Interartival time= r(5 — 0)

Assume that the simulation run begins at time -= 0. A random number of r = 0.2804
generates an interarrival time of 5(0.2804) = 1.4 minutes for customer 1. Thus, customer 1
arrives 1.4 minutes after the simulation run begins. A second random number of r = 0.2598
generates an interarrival time of 5(0.2598) = 1.3 minutes, indicating that customer 2 arrives
1.3 minutes after customer 1. Thus, customer 2 arrives 1.4 + 1.3 = 2.7 minutes after

FIGURE 1 2.1 1 UNIFORM PROBABILITY DISTRIBUTION OF INTERARRIVAL TIMES
FOR THE ATM WAITING LINE SYSTEM

2.5

Interartival Time in Minutes
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FIGURE 1 2.1 2 NORMAL PROBABILITY DISTRIBUTION OF SERVICE TIMES
FOR THE ATM WAITING LINE SYSTEM

2
Service Time in Minutes

the simulation begins. Continuing, a third random number of r = 0.9802 indicates that
customer 3 arrives 4.9 minutes after customer 2, which is 7.6 minutes after the simulation
begins.

Customer Service Times

Another probabilistic input in the ATM simulation model is the service time, which is the time
a customer spends using the ATM machine. Past data from similar ATMs indicate that a nor-
mal probability distribution with a mean of 2 minutes and a standard deviation of 0.5 minutes,
as shown in Figure 12.12, can be used to describe service times. As discussed in Sections 12.1
and 12.2, values from a normal probability distribution with mean 2 and standard deviation
0.5 can be generated using the Excel function =-- NORMIN1V(RAND0,2,0.5). For example, the
random number of 0.7257 generates a customer service time of 2.3 minutes.

Simulation Model

The probabilistic inputs to the Hanirnondsport Savings Bank ATM simulation model are the
interarrival time and the service time. The controllable input is the number of ATMs used.
The output will consist of various operating characteristics such as the probability of wait-
ing, the average waiting time, the maximum waiting time, and so on. We show a diagram
of the ATM simulation model in Figure 12.13.

FIGURE 1 2.1 3 HAMMONDSPORT SAVINGS BANK ATM SIMULATION MODEL
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Time Time
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Figure 12.14 shows a flowchart that defines the sequence of logical and mathematical
operations required to simulate the Hammondsport ATM system. The flowchart uses the
following notation:

IAT Interarrival time generated

Arrival time (i) = Time at which customer i arrives

Start time (i) = Time at which customer i starts service

Wait time (i) = Waiting time for customer i

ST = Service time generated

Completion time (i) = Time at which customer i completes service

,System time (i) = System time for customer i (completion time — arrival time)

FIGURE 12.14 FLOWCHART OF THE HAMMONDSPORT SAVINGS BANK ATM WAITING
LINE SIMULATION

Initialize Simulation Model
i 0; Arrival Tirne(0) = 0; Completion Time(0)

New Customer
1 + 1

Generate Interarrival Time (14T)
Next

Uiatonicr
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The decision rule for
deciding whether the
ATM is idle or busy is the
most difficult aspect of
the logic in a waiting line
simulation model.

Referring to Figure 12.14, we see that the simulation is initialized in the first block
of the flowchart. Then a new customer is created. An interarrival time is generated to de-
termine the time since the preceding customer arrived. 2 The arrival time for the new cus-
tomer is then computed by adding the interarrival time to the arrival time of the preceding
customer.

The arrival time for the new customer must be compared to the completion time of the
preceding customer to determine whether the ATM is idle or busy. If the arrival time of the
new customer is greater than the completion time of the preceding customer, the preceding
customer will have finished service prior to the arrival of the new customer. In this case,
the ATM will be idle, and the new customer can begin service immediately. The service start
time for the new customer is equal to the arrival time of the new customer. However, if the
arrival time for the new customer is not greater than the completion time of the preceding
customer, the new customer arrived before the preceding customer finished service. In this
case, the ATM is busy; the new customer must wait to use the ATM until the preceding cus-
tomer completes service. The service start time for the new customer is equal to the com-
pletion time of the preceding customer.

Note that the time the new customer has to wait to use the ATM is the difference between
the customer's service start time and the customer's arrival time. At this point, the customer
is ready to use the ATM, and the simulation run continues with the generation of the cus-
tomer's service time. The time at which the customer begins service plus the service time
generated determine the customer's completion time. Finally, the total time the customer
spends in the system is the difference between the customer's service completion time and
the customer's arrival time. At this point, the computations are complete for the current
customer, and the simulation continues with the next customer. The simulation is continued
until a specified number of customers have been served by the ATM.

Simulation results for the first 10 customers are shown in Table 12.10. We discuss the
computations for the first three customers to illustrate the logic of the simulation model and
to show how the information in Table 12.10 was developed.

TABLE 1 2.1 0 SIMULATION RESULTS FOR 10 ATM CUSTOMERS

Customer
Interarrival

Time
Arrival
Time

Service
Start Time

Waiting
Time

Service
Time

Completion
Time

Time in
System

1 1.4 1.4 1.4 0.0 2.3 3.7 2.3
2 1.3 2.7 3.7 1.0 1.5 5.2 2.5
3 4.9 7.6 7.6 0.0 2.2 9.8 2.2
4 3.5 11.1 11.1 0.0 2.5 13.6 2.5
5 0.7 11.8 13.6 1.8 1.8 15.4 3.6
6 2.8 14.6 15.4 0.8 2.4 17.8 3.2
7 2.1 16.7 17.8 1.1 2.1 19.9 3.2
8 0.6 17.3 19.9 2.6 1.8 21.7 4.4
9 2.5 19.8 , 21.7 1.9 2.0 23.7 3.9

10 1.9 21.7 23.7 2.0 2.3 26.0 4.3

Totals 21.7 11.2 20.9 32.1

Averages 2.17 1.12 2.09 3.21

2
For the first customer, the interarrival time determines the time since the simulation started. Thus, the First interarrival time

determines the time the First customer arrives.



562 Chapter 1 2 Simulation

Customer 1

• An interarrival time of IAT = 1.4 minutes is generated.
• Because the simulation run begins at time 0, the arrival time for customer 1 is

0 + 1.4 = 1.4 minutes.
• Customer 1 may begin service immediately with a start time of 1.4 minutes.
• The waiting time for customer 1 is the start time minus the arrival time: 1.4 - 1.4 ----

0 minutes.
• A service time of ST = 2.3 minutes is generated for customer 1.
• The completion time for cukomer 1 is the start time plus the service time: 1.4 +

2.3 = 3.7 minutes.
• The time in the system for customer 1 is the completion time minus the arrival time:

3.7 - 1.4 = 2.3 minutes.

Customer 2

• An interarrival time of IAT = 1.3 minutes is generated.
• Because the arrival time of customer 1 is 1.4, the arrival time for customer 2 is

1.4 + 1.3 = 2.7 minutes.
• Because the completion time of customer 1 is 3.7 minutes, the arrival time of cus-

tomer 2 is not greater than the completion time of customer 1; thus, the ATM is busy
when customer 2 arrives.

• Customer 2 must wait for custom

•

 er 1 to complete service before beginning service.
Customer 1 completes service at 3.7 minutes, which becomes the start time for cus-
tomer 2.

• The waiting time for customer 2 is the start time minus the arrival time: 3.7 -
2.7 = 1 minute.

• A service time of ST = 1.5 minutes is generated for customer 2.
• The completion time for customer 2 is the start time plus the service time: 3.7 + 1.5 =

5.2 minutes.
• The time in the system for customer 2 is the completion time minus the arrival time:

5.2 - 2.7 = 2.5 minutes.

Customer 3
• An interarrival time of IAT = 4.9 minutes is generated.
• Because the an-ival time of customer 2 was 2.7 minutes, the arrival time for cus-

tomer 3 is 2.7 + 4.9 = 7.6 minutes.
• The completion time of customer 2 is 5.2 minutes, so the arrival time for customer

3 is greater than the completion time of customer 2. Thus, the ATM is idle when cus-
tomer 3 arrives.

• Customer 3 begins service immediately with a start time of 7.6 minutes.
, • The waiting time for customer 3 is the start time minus the arrival time: 7.6 - 7.6 =

0 minutes.
• A service time of ST -= 2.2 minutes is generated for customer 3.
• The completion time for customer 3 is the start time plus the service time: 7.6 + 2.2 =

9.8 minutes.
• The time in the system for customer 3 is the completion time minus the arrival time:

9.8 - 7.6 = 2.2 minutes.

Using the totals in Table 12.10, we can compute an average waiting time for the 10 cus-
tomers of 11.2/10 ---- 1.12 minutes, and an average time in the system of 32.1/10 = 3.21 min-
utes. Table 12.10 shows that seven of the 10 customers had to wait. The total time for the
10-customer simulation is given by the completion time of the 10th customer: 26.0 min-
utes. However, at this point, we realize that a simulation for 10 customers is much too short
a period to draw any firm conclusions about the operation of the waiting line.
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ExcELfile
Hammondsportl

Hammondsport Savings Bank ATM Simulation

Using an Excel worksheet, we simulated the operation of the Hammondsport ATM waiting
line system for 1000 customers. The worksheet used to carry out the simulation is shown
in Figure 12.15. Note that the simulation results for customers 6 through 995 have been hid-
den so that the results can be shown in a reasonably sized figure. If desired, the rows for
these customers can be shown and the simulation results displayed for all 1000 customers.

Ultimately, summary statistics will be collected in order to describe the results of
1000 customers. Before collecting the summary statistics, let us point out that most simula-
tion studies of dynamic systems focus on the operation of the system during its long-run or
steady-state operation. To ensure that the effects of start-up conditions are not included in the

FIGURE 1 2. 1 5 EXCEL WORKSHEET FOR THE HAMMOND SPORT SAVINGS BANK
WITH ONE ATM

• .. A i B C D
Hammondsport Savings Bank with One ATM

Interarnval Times (Uniform Distribution)
Smallest Value 0
Lat.:est Value

Service Times Normal Distribution)
Mean 2
Std Deviation 0.5

10
11

. 12 Simulation
13
14 Interarrival Arrival Service Waiting Service Completion Time
15, Customer Time Time Start Time Time Time Time in System
16 1 1.4 1.4 1.4 0.0 2.3 3.7 2.3
17 2 1.3 2.7 3.7 1.0 1.5 5.2 2.5
18 3 4.9 7.6 7.6 0.0 2.2 9.8 2.2
19 4 3.5 11.1 11.1 0.0 2.5 13.6 2.5
20 5 0.7 11.8 13.6 1.8 1.8 15.4 3.6

1011 996 0.5 2496.8 2498.1 1.3 0.6 2498.7 1.9
1012 997 0.2 2497.0 2498.7 1.7 2.0 2500.7 3.7
1013 998 2.7 2499.7 2500.7 1.0 1.8 2502.5 2.8
10.14. 999 3.7 2503.4 2503.4 0.0 2.4 2505.8 2.4
1015 1000 4.0 2507.4 2507.4 0.0 1.9 2509.3 1.9
1016

,

1017 Summary Statistics
1018 Number Waiting
1019 Probability of Waiting
1020 Average Waiting Time
1021
1022

Maximum Waiting Time
Utilization of ATM

•

1023 Number Waiting > 1 Min
1024, Probability of Waiting > 1 Min
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FIGURE 12.16 HISTOGRAM SHOWING THE WAITING TIME FOR 900 ATM CUSTOMERS
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steady-state calculations, a dynamic simulation model is usually run for a specified period
without collecting any data about the operation of the system. The length of the start-up
period can vary depending on the application. For the Hammondsport Savings Bank ATM
simulation, we treated the results for the first 100 customers as the start-up period. Thus,
the summary statistics shown in Figure 12.15 are for the 900 customers arriving during the
steady-state period.

The summary statistics show that 549 of the 900 Hammondsport customers had to wait.
This result provides a 549/900 = 0.61 probability that a customer will have to wait for
service. In other words, approximately 61% of the customers will have to wait because the
ATM is in use. The average waiting time is 1.59 minutes per customer with at least one cus-
tomer waiting the maximum time of 13.5 minutes. The utilization rate of 0.7860 indicates
that the ATM is in use 78.6% of the time. Finally, 393 of the 900 customers had to wait more
than 1 minute (43.67% of all customers). A histogram of waiting times for the 900 customers
is shown in Figure 12.16. This figure shows that 45 customers (5%) had a waiting time
greater than 6 minutes.

The simulation supports the conclusion that the branch will have a busy ATM system.
With an average customer wait time of 1.59 minutes, the branch does not satisfy the bank's
customer service guideline. This branch is a good candidate for installation of a second ATM.

Simulation with Two ATMs

We extended the simulation model to the case of two ATMs. For the second ATM we also
assume that the service time is normally distributed with a mean of 2 minutes and a stan-
dard deviation of 0.5 minutes. Table 12.11 shows the simulation results for the first 10 cus-
tomers. In comparing the two-ATM system results in Table 12.11 with the single ATM
simulation results shown in Table 12.10, we see that two additional columns are needed.
These two columns show when each ATM becomes available for customer service. We as-
sume that, when a new customer arrives, the customer will be served by the ATM that frees
up first. When the simulation begins, the first customer is assigned to ATM 1.

Table 12.11 shows that customer 7 is the first customer who has to wait to use an ATM.
We describe how customers 6, 7, and 8 are processed to show how the logic of the simula-
tion run for two ATMs differs from that with a single ATM.
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TABLE 12.11 SIMULATION RESULTS FOR 10 CUSTOMERS FOR A TWO-ATM SYSTEM

Interarrival Arrival
Customer Time Time

Service Waiting Service Completion Time in Time Available

Start Time Time Time Time System ATM 1 ATM 2

1 1.7 1.7 1.7 0.0 2.1 3.8 2.1 3.8 0.0
2 0.7 2.4 2.4 0.0 2.0 4.4 2.0 3.8 4.4
3 2.0 4.4 4.4 0.0 1.4 5.8 1.4 5.8 4.4
4 0.1 4.5 4.5 0.0 0.9 5.4 0.9 5.8 5.4
5 4.6 9.1 9.1 0.0 2.2 11.3 2.2 5.8 11.3
6 1.3 10.4 10.4 0.0 ' 1.6 12.0 1.6 12.0 11.3
7 0.6 11.0 11.3 0.3 1.7 13.0 2.0 12.0 13.0
8 0.3 11.3 12.0 0.7 2.2 14.2 2.9 14.2 13.0
9 3.4 14.7 14.7 0.0 2.9 17.6 2.9 14.2 17.6

10 0.1 14.8 14.8 0.0 2.8 17.6 2.8 17.6 17.6

Totals 14.8 1.0 19.8 20.8

Averages 1.48 0.1 1.98 2.08

Customer 6

• An interarrival time of 1.3 minutes is generated, and customer 6 arrives 9.1 + 1.3 =
10.4 minutes into the simulation.

• From the customer 5 row, we see that ATM 1 frees up at 5.8 minutes, and ATM 2
will free up at 11.3 minutes into the simulation. Because ATM 1 is free, customer 6
does not wait and begins service on ATM 1 at the arrival time of 10.4 minutes.

• A service time of 1.6 minutes is generated for customer 6. So customer 6 has a com-
pletion time of 10.4 + 1.6 = 12.0 minutes.

• The time ATM 1 will next become available is set at 12.0 minutes; the time avail-
able for ATM 2 remains 11.3 minutes.

Customer 7

• An interarrival time of 0.6 minute is generated, and customer 7 arrives 10.4 + 0.6 =
11.0 minutes into the simulation.

• From the previous row, we see that ATM 1 will not be available until 12.0 minutes,
and ATM 2 will not be available until 11.3 minutes. So customer 7 must wait to use
an ATM. Because ATM 2 will free up first, customer 7 begins service on that ma-
chine at a start time of 11.3 minutes. With an arrival time of 11.0 and a service start
time of 11.3, customer 7 experiences a waiting time of 11.3 - 11.0 = 0.3 minute.

• A service time of 1.7 minutes is generated, leading to a completion time of
11.3 + 1.7 = 13.0 minutes.

• The time available for ATM 2 is updated to 13.0 minutes, and the time available for
ATM 1 remains at 12.0 minutes.

Customer 8

• An interarrival time of 0.3 minute is generated, and customer 8 arrives 11.0 + 0.3 =
11.3 minutes into the simulation.

• From the previous row, we see that ATM 1 will be the first available. Thus, cus-
tomer 8 starts service on ATM 1 at 12.0 minutes resulting in a waiting time of 12.0 -
11.3 = 0.7 minute.

• A service time of 2.2 minutes is generated, resulting in a completion time of
12.0 + 2.2 14.2 minutes and a system time of 0.7 + 2.2 = 2.9 minutes.

• The time available for ATM 1 is updated to 14.2 minutes, and the time available for
ATM 2 remains at 13.0 minutes.
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Worksheets for the
Hammondsport one-ATM
and two-ATM systems are
available on the CD that
accompanies this text.

From the totals in Table 12.11, we see that the average waiting time for these 10 cus_
tomers is only 1.0/10 = 0.1 minute. Of course, a much longer simulation will be necessary
before any conclusions can be drawn.

Simulation Results with Two ATMs

The Excel worksheet that we used to conduct a simulation for 1000 customers using two
ATMs is shown in Figure 12.17. Results for the first 100 customers were discarded to account
for the start-up period. With two ATMs, the number of customers who had to wait was reduced
from 549 to 78. This reduction provides a 78/900 = 0.0867 probability that a customer will
have to wait for service when two ATMs are used. The two-ATM system also reduced the
average waiting time to 0.07 minute (4.2 seconds) per customer. The maximum waiting time
was reduced from 13.5 to 2.9 minutes, and each ATM was in use 40.84% of the time. Finally,
only 23 of the 900 customers had to wait more than 1 minute for an ATM to become avail-
able. Thus, only 2.56% of customers had to wait more than 1 minute. The simulation results
provide evidence that Hammondsport Savings Bank needs to expand to the two-ATM system.

ExcELfile
Hammondsport2

FIGURE 1 2. 1 7 EXCEL WORKSHEET FOR THE HAMMONDSPORT SAVINGS BANK
WITH TWO ATMs
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The simulation models that we developed can now be used to study the ATM operation
at other branch banks. In each case, assumptions must be made about the appropriate in-
terarrival time and service time probability distributions. However, once appropriate as-
sumptions have been made, the same simulation models can be used to determine the
operating characteristics of the ATM waiting line system. The Management Science in
Action, Preboard Screening at Vancouver International Airport, describes another use of
simulation for a queueing system.

MANAGEMENT SCIENCE IN ACTION

PREBOARD SCREENING AT VANCOUVER INTERNATIONAL AIRPORT*

Following the September 11, 2001, terrorist attacks in
the United States, long lines at airport security check-
points became commonplace. In order to reduce
passenger waiting time, the Vancouver International
Airport Authority teamed up with students and fac-
ulty at the University of British Columbia's Centre
for Operations Excellence (COE) to build a simula-
tion model of the airport's preboard screening secu-
rity checkpoints. The goal was to use the simulation
model to help achieve acceptable service standards.

Prior to building the simulation model, stu-
dents from the COE observed the flow of passen-
gers through the screening process and collected
data on the service time at each process step. In ad-
dition to service time data, passenger demand data
provided input to the simulation model. Two trian-
gular probability distributions were used to simu-
late passenger arrivals at the preboarding facilities.
For flights to Canadian destinations a 90-40-20 tri-
angle was used. This distribution assumes that, for

each flight, the first passenger will arrive at the
screening checkpoint 90 minutes before departure,
the last passenger will arrive 20 minutes before de-
parture, and the most likely arrival time is 40 min-
utes before departure. For international flights a
150-80-20 triangle was used.

Output statistics from the simulation model
provided information concerning resource utiliza-
tion, waiting line lengths, and the time passengers
spend in the system. The simulation model pro-
vided information concerning the number of per-
sonnel needed to process 90% of the passengers
with a waiting time of 10 minutes or less. Ulti-
mately the airport authority was able to design and
staff the preboarding checkpoints in such a fashion
that waiting times for 90% of the passengers were
a maximum of 10 minutes.

*Based on Derek Atkins et al., "Right on Queue,"
OR/MS Today (April 2003): 26-29.

NOTES AND COMMENTS

1. The ATM waiting line model was based on uni-
formly distributed interarrival times and normally
distributed service times. One advantage of simu-
lation is its flexibility in accommodating a variety
of different probability distributions. For instance,
if we believe an exponential distribution is more
appropriate for interarrival times, the ATM simu-
lation could be repeated by simply changing the
way the interarrival times are generated.

2. At the beginning of this section, we defined
discrete-event simulation as involving a dy-
namic system that evolves over time. The simu-
lation computations focus on the sequence of
events as they occur at discrete points in time. In
the ATM waiting line example, customer ar-
rivals and the customer service completions
were the discrete events. Referring to the arrival

times and completion times in Table 12.10, we
see that the first five discrete events for the ATM
waiting line simulation were as follows:

Event Time

Customer 1 arrives 1.4
Customer 2 arrives 2.7
Customer 1 finished 3.7
Customer 2 finished 5.2
Customer 3 arrives 7.6

3. We did not keep track of the number of cus-
tomers in the ATM waiting line as we carried
out the ATM simulation computations on a
customer-by-customer basis. However, we can
determine the average number of customers in

(continued)
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the waiting line from other information in the  the next 900 customers was 2509.3 — 247.8 =
simulation output. The following relationship is 2261.5 minutes. The average waiting time was
valid for any waiting line system: 1.59 minutes. During the simulation, the 900 cus-

tomers had a total waiting time of 900(1.59) =
Average number = Total waiting time 1431 minutes. Therefore, the average number of
in waiting line Total time of simulation customers in the waiting line is

For the system with one ATM, the 100th customer
completed service at 247.8 minutes into the
lation. Thus, the total time of the simulation for

Average number
in waiting line = 1431/2261.5

= 0.63 customer

12.4 OTHER SIMULATION ISSUES

The computational and
record-keeping aspects of

simulation models are
assisted by special
simulation software
packages. The packages ease
the tasks of developing a
computer simulation model.

Because simulation is one of the most widely used quantitative analysis techniques, various
software tools have been developed to help analysts implement a simulation model on a com-
puter. In this section we comment on the software available and discuss some issues involved
in verifying and validating a simulation model. We close the section with a discussion of
some of the advantages and disadvantages of using simulation to study a real system.

Computer Implementation

The use of spreadsheets for simulation has grown rapidly in recent years, and third-party
software vendors have developed spreadsheet add-ins that make building simulation mod-
els on a spreadsheet much easier. These add-in packages provide an easy facility for gen-
erating random values from a variety of probability distributions and provide a rich array
of statistics describing the simulation output. Two popular spreadsheet add-ins are Crystal
Ball from Decisioneering and @RISK from Palisade Corporation. Although spreadsheets
can be a valuable tool for some simulation studies, they are generally limited to smaller,
less complex systems.

With the growth of simulation applications, both users of simulation and software de-
velopers began to realize that computer simulations have many common features: model
development, generating values from probability distributions, maintaining a record of
what happens during the simulation, and recording and summarizing the simulation out-
put. A variety of special-purpose simulation packages are available, including GPSS®,
SIIVISCRIPT ®, SLAM ® , and Arena® . These packages have built-in simulation clocks, sim-
plified methods for generating probabilistic inputs, and procedures for collecting and sum-
marizing the simulation output. Special-purpose simulation packages enable quantitative
analysts to simplify the process of developing and implementing the simulation model. In-
deed, Arena 6.0 was used to develop the simulation model described in the Management
Science in Action, Preboard Screening at Vancouver International Airport.

Simulation models can also be developed using general-purpose computer programming
languages such as BASIC, FORTRAN, PASCAL, C, and C++. The disadvantage of using
these languages is that special simulation procedures are not built in. One command in a
special-purpose simulation package often performs the computations and record-keeping
tasks that would require several BASIC, FORTRAN, PASCAL, C, or C+ + statements to
duplicate. The advantage of using a general-purpose programming language is that they offer
greater flexibility in terms of being able to model more complex systems.

To decide which software to use, an analyst will have to consider the relative merits of
a spreadsheet, a special-purpose simulation package, and a general-purpose computer pro-
gramming language. The goal is to select the method that is easy to use while still provid-
ing an adequate representation of the system being studied.



1 2.4 Other Simulation Issues 569

Using simulation, we can
ask what-if questions and
project how the real system
will behave. Although
simulation does not
guarantee optimality, it will
usually provide near-
optimal solutions. In
addition, simulation models
often warn against poor
d
ecision strategies by

p
rojecting disastrous

o
utcomes such as system

fa
ilures, large financial

l
osses, and so on.

Verification and Validation
An important aspect of any simulation study involves confirming that the simulation model
accurately describes the real system. Inaccurate simulation models cannot be expected to
provide worthwhile information. Thus, before using simulation results to draw conclusions
about a real system, one must take steps to verify and validate the simulation model.

Verification is the process of determining that the computer procedure that performs
the simulation calculations is logically correct. Verification is largely a debugging task to
make sure that no errors are in the computer procedure that implements the simulation In
some cases, an analyst may compare computer results for a limited number of events with
independent hand calculations. In other cases, tests may be performed to verify that the
probabilistic inputs are being generated correctly and that the output from the simulation
model seems reasonable. The verification step is not complete until the user develops a high
degree of confidence that the computer procedure is error free.

Validation is the process of ensuring that the simulation model provides an accurate rep-
resentation of a real system. Validation requires an agreement among analysts and managers
that the logic and the assumptions used in the design of the simulation model accurately reflect
how the real system operates. The first phase of the validation process is done prior to, or in
conjunction with, the development of the computer procedure for the simulation process. Val-
idation continues after the computer program has been developed, with the analyst reviewing
the simulation output to see whether the simu' lation results closely approximate the perfor-
mance of the real system. If possible, the output of the simulation model is compared to the
output of an existing real system to make sure that the simulation output closely approximates
the performance of the real system. If this form of validation is not possible, an analyst can ex-
periment with the simulation model and have one or more individuals experienced with the op-
eration of the real system review the simulation output to determine whether it is a reasonable
approximation of what would be obtained with the real system under similar conditions.

Verification and validation are not tasks to be taken lightly. They are key steps in any
simulation study and are necessary to ensure that decisions and conclusions based on the
simulation results are appropriate for the real system.

Advantages and Disadvantages of Using Simulation
The primary advantages of simulation are that it is easy to understand and that the method-
ology can be used to model and learn about the behavior of complex systems that would be
difficult, if not impossible, to deal with analytically. Simulation models are flexible; they
can be used to describe systems without requiring the assumptions that are often required
by mathematical models. In general, the larger the number of probabilistic inputs a system
has, the more likely that a simulation model will provide the best approach for studying the
system. Another advantage of simulation is that a simulation model provides a convenient
experimental laboratory for the real system. Changing assumptions or operating policies in
the simulation model and rerunning it can provide results that help predict how such
changes will affect the operation of the real system. Experimenting directly with a real sys-
tem is often not feasibld.

Simulation is not without some disadvantages. For complex systems, the process of de-
veloping, verifying, and validating a simulation model can be time-consuming and expen-
sive. In addition, each simulation run provides only a sample of how the real system will
operate. As such, the summary of the simulation data provides only estimates or approxi-
mations about the real system. Consequently, simulation does not guarantee an optimal so-
lution. Nonetheless, the danger of obtaining poor solutions is slight if the analyst exercises
good judgment in developing the simulation model and if the simulation process is run long
enough under a wide variety of conditions so that the analyst has sufficient data to predict
how the real system will operate.
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SUMMARY

Simulation is a method for learning about a real system by experimenting with a model that
represents the system. Some of the reasons simulation is frequently used are

1. It can be used for a wide variety of practical problems.
2. The simulation approach is relatively easy to explain and understand. As a result,

management confidence is increased, and acceptance of the results is more easily
obtained.

3. Spreadsheet packages now provide another alternative for model implementation,
and third-party vendors have developed add-ins that expand the capabilities of the
spreadsheet packages.

4. Computer software developers have produced simulation packages that make it eas-
ier to develop and implement simulation models for more complex problems.

We first showed how simulation can be used for risk analysis by analyzing a situation
involving the development of a new product: the PortaCom printer. We then showed how
simulation can be used to select an inventory replenishment level that would provide
both a good profit and a good customer service level. Finally, we developed a simulation
model for the Hammondsport Savings Bank ATM waiting line system. This model is an
example of a dynamic simulation model in which the state of the system changes or
evolves over time.

Our approach was to develop a simulation model that contained both controllable in-
puts and probabilistic inputs. Procedures were developed for randomly generating values
for the probabilistic inputs, and a flowchart was developed to show the sequence of logical
and mathematical operations that describe the steps of the simulation process. Simulation
results obtained by running the simulation for a suitable number of trials or length of time
provided the basis for conclusions drawn about the operation of the real system.

The Management Science in Action, Netherlands Company Improves Warehouse Order-
Picking Efficiency, describes how a simulation model determined the warehouse storage loca-
tion for 18,000 products and the sequence in which products were retrieved by order-picking
personnel.

MANAGEMENT SCIENCE IN ACTION

NETHERLANDS COMPANY IMPROVES WAREHOUSE ORDER-PICKING EFFICIENCY*

As a wholesaler of tools, hardware, and garden
equipment, Ankor, based in The Netherlands, ware-
houses more than 18,000 different products for
customers who are primarily retail store chains, do-
it-yourself businesses, and garden centers. Ware-
house managers store the fastest-moving products
on the ends of the aisles on the ground floor, the
medium-moving products in the middle section of
the aisles on the ground floor, and the slow-moving
products on the mezzanine.

When a new order is received, a warehouse order-
picker travels to each product location and selects the
requested number of units. An average order includes
25 different products, which requires the order-picker
to travel to 25 different locations in the warehouse. In
order to minimize damage to the products, heavier
products are picked first and breakable products are

picked last. Order-picking is typically one of the most
time-consuming and expensive aspects of operating
the warehouse. The company is under continuous
pressure to improve the efficiency of this operation.

To increase efficiency, researchers developed a
simulation model of the warehouse order-picking
system. Using a sequence of 1098 orders received
for 27,790 products over a seven-week period, the
researchers used the model to simulate the required
order-picking times. The researchers, with the help
of the model, varied the assignment of products
to storage locations and the sequence in which
products were retrieved from the storage locations.
The model simulated order-picking times for a va-
riety of product storage location alternatives and
four different routing policies that determined the
sequence in which products were picked.



Glossal/

Analysis of the simulation results provided a
new storage assignment policy for the warehouse
as well as new routing rules for the sequence in
which to retrieve products from storage. Imple-
mentation of the new storage and routing proce-
dures reduced the average route length of the
order-picking operation by 31%. Due to the in-
creased efficiency of the operation, the number of

order pickers was reduced by more than 25%,
saving the company an estimated €140,00 per
year.

*Based on R. Dekker, M. B. M. de Koster, K. J.
Roodbergen, and H. van Kalleveen, "Improving Order-
Picking Response Time at Ankor's Warehouse," Inter-
faces (July/August 2004): 303-313.

GLOSSARY

Simulation A method for learning about a real system by experimenting with a model
that represents the system.

Simulation experiment The generation of a sample of values for the probabilistic inputs
of a simulation model and computing the resulting values of the model outputs.

Controllable input Input to a simulation model that is selected by the decision maker.

Probabilistic input Input to a simulation model that is subject to uncertainty. A proba-
bilistic input is described by a probability distribution.

Risk analysis The process of predicting the outcome of a decision in the face of uncertainty.

Parameters Numerical values that appear in the mathematical relationships of a model.
Parameters are considered known and remain constant over all trials of a simulation.

What-if analysis A trial-and-error approach to learning about the range of possible out-
puts for a model. Trial values are chosen for the model inputs (these are the what-ifs) and
the value of the output(s) is computed.

Base-case scenario Determining the output given the most likely values for the proba-
bilistic inputs of a model.

Worst-case scenario Determining the output given the worst values that can be expected
for the probabilistic inputs of a model.

Best-case scenario Determining the output given the best values that can be expected for
the probabilistic inputs of a model.

Static simulation model A simulation model used in situations where the state of the sys-
tem at one point in time does not affect the state of the system at future points in time. Each
trial of the simulation is independent.

Dynamic simulation model A simulation model used in situations where the state of the
system affects how the system changes or evolves over time.

Event An instantaneous occurrence that changes the state of the system in a simulation
model.

Discrete-event simulation model A simulation model that describes how a system
evolves over time by using events that occur at discrete points in time.

Verification The process of determining that a computer program implements a simula-
tion model as it is intended.

Validation The process of determining that a simulation model provides an accurate rep-
resentation of a real system.
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Managerial Report
Prepare a report that discusses the general development of the spreadsheet simulation
model, and make any recommendations that you have regarding the best store design and
staffing plan for County Beverage. One additional consideration is that the design allowing
for a two-channel system will cost an additional $10,000 to build.

1. List the information the spreadsheet simulation model should generate so that a de-
cision can be made on the store design and the desired number of clerks.

2. Run the simulation for 1000 customers for each alternative considered. You may
want to consider making more than one run with each alternative. [Note: Values
from an exponential probability distribution with mean ,u can be generated in Excel
using the following function: = —,OLN(RAND()).]

3. Be sure to note the number of customers County Beverage is likely to lose due to
long customer waiting times with each design alternative.

Appendix 12.1 SIMULATION WITH EXCEL

Excel enables small and moderate-sized simulation models to be implemented relatively
easily and quickly. In this appendix we show the Excel worksheets for the three simulation
models presented in the chapter.

The PortaCorn Simulation Model
We simulated the PortaCom problem 500 times. The worksheet used to carry out the simu-
lation is shown again in Figure 12.19. Note that the simulation results for trials 6 through 495
have been hidden so that the results can be shown in a reasonably sized figure. If desired, the

93
," rows for these trials can be shown and the simulation results displayed for all 500 trials. Let

%ea..
Tutoriat 7: us describe the details of the Excel worksheet that provided the PortaCom simulation.

Simulation Using First, the PortaCom data are presented in the first 14 rows of the worksheet. The sell-
Basic Excel

ing price per unit, administrative cost, and advertising cost parameters are entered directly
into cells C3, C4, and C5. The discrete probability distribution for the direct labor cost
per unit is shown in a tabular format. Note that the random number intervals are entered
first followed by the corresponding cost per unit. For example, 0.0 in cell A10 and 0.1 in
cell B10 show that a cost of $43 per unit will be assigned if the random number is in the in-
terval 0.0 but less than 0.1. Thus, approximately 10% of the simulated direct labor costs
will be $43 per unit. The uniform probability distribution with a smallest value of $80 in
cell E8 and a largest value of $100 in cell E9 describes the parts cost per unit. Finally, a nor-
mal probability distribution with a mean of 15,000 units in cell E13 and a standard deviation
of 4500 units in cell E14 describes the first-year demand distribution for the product. At this
point we are ready to insert the Excel formulas that will carry out each simulation trial.

Simulation information for the first trial appears in row 21 of the worksheet. The cell
formulas for row 21 are as follows:

Cell A21 Enter 1 for the first simulation trial

Cell B21 Simulate the direct labor cost per unit*
=VLOOKUP(RAND(),$A$10:$C$14,3)

Cell C21 Simulate the parts cost per unit (uniform distribution)
----$E$8+($E$9—$E$8)*RAND()

The VLOOKUP function generates a random number using the RAND() function. Then, using the table defined by the region

from cells $A$10 to $C$1 4, the function identifies the row containing the RAND() random number and assigns the corre-
sponding direct labor cost per unit shown in column C.
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FIGURE 12.19 WORKSHEET FOR THE PORTACOM PROBLEM

Excafile
PortaCom

A . B
1 PortaCom Risk Analysis
2
3 Selling Price per Unit $249
4 Administrative Cost $400,000
5 Advertising Cost $600,000
"6
7 Direct Labor Cost Parts Cost (Uniform Distribution)

Lower Upper Smallest Value $80
9 Random No. Random No. Cost per UnitLargest

$43
Value $100 

10 0.0 0.1
11 0.1 0.3 $44
12 0.3 0.7 $45 Demand (Normal Distribution)
13 0.7 0.9 $46 Mean 15000
14 0.9 1.0 $47 Std Deviation 4500
15
16
17 Simulation Trials
18
19 Direct Labor Parts First-Year
20 Trial Cost per Unit Cost per Unit Demand Profit
21 1 47 $85.36 17,366 $1,025,570
22 2 44 $91.68 12,900 $461,828
23 3 45 $93.35 20,686 $1,288,906
24 4 43 $98.56 10,888 $169,807
2, 5 45 $88.36 14,259 $648,911
16. 496 44 $98.67 8,730 ($71,739)

517 497 45 $94.38 19,257 $1,110,952
518 498 44 $90.85 14,920 $703,118
519 499 43 $90.37 13,471 $557,652
520 500 46 $92.50 18,614 $1,056,847
521
522 Summary Statistics
523 Mean Profit $698;45 :
524 Standard Deviation
525 MinimumMinimum Profit ■ $ 785;230-
526 Maximum Profit
527 Number of Losses
528 Probability of Loss i ■ 1020

Cell D21 Simulate the first-year demand (normal distribution)
=NORMINV(RANDO,$E$13,$E$14)

Cell E21 The profit obtained for the first trial
=---($C$3—B21—C21)*D21—$C$4—$C$5

Cells A21E21 can be copied to A520:E520 in order to provide the 500 simulation trials.
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Ultimately, summary statistics will be collected in order to describe the results of the
500 simulated trials. Using the standard Excel functions, the following summary statistics
are computed for the 500 simulated profits appearing in cells E21 to E520.

Cell E523 The mean profit per trial = AVERAGE(E21:E520)

Cell E524 The standard deviation of profit =-- STDEV(E21:E520)

Cell E525 The minimum profit = MIN(E21:E520)

Cell E526 The maximum profit = MAX(E21:E520)

Cell E527 The count of the number of 'trials where a loss occurred
(i.e., profit < $0) = COUNTIF(E21:E520,"<0")

Cell E528 The percentage or probability of a loss based on the 500 trials = E527/500

The F9 key can be used to perform another complete simulation of PortaCom. In this
case, the entire worksheet will be recalculated and a set of new simulation results will be
provided. Any data summaries, measures, or functions that have been built into the work-
sheet earlier will be updated automatically.

The Butler Inventory Simulation Model

We simulated the Butler inventory operation for 300 months. The worksheet used to carry
out the simulation is shown again in Figiire 12.20. Note that the simulation results for
months 6 through 295 have been hidden so that the results can be shown in a reasonably
sized figure. If desired, the rows for these months can be shown and the simulation results
displayed for all 300 months. Let us describe the details of the Excel worksheet that pro-
vided the Butler inventory simulation.

First, the Butler inventory data are presented in the first 11 rows of the worksheet. The
gross profit per unit, holding cost per unit, and shortage cost per unit data are entered di-
rectly into cells C3, C4, and C5. The replenishment level is entered into cell C7, and the
mean and standard deviation of the normal probability distribution for demand are entered
into cells B10 and B11. At this point we are ready to insert Excel formulas that will carry
out each simulation month or trial.

Simulation information for the first month or trial appears in row 17 of the worksheet.
The cell formulas for row 17 are as follows:

Cell A17 Enter 1 for the first simulation month

Cell B17 Simulate demand (normal distribution)
=NORMINV(RA1'DO,$B$10,$B$11)

Next compute the sales, which is equal to demand (cell B17) if demand is less than or
equal to the replenishment level, or is equal to the replenishment level (cell C7) if demand
is greater than the replenishment level.

Cell C17 Compute sales =1F(B17<=$C$7,B17,$C$7)

Cell D17 Calculate gross profit =$C$3*C17

Cell E17 Calculate the holding cost if demand is less than or equal
to the replenishment level
=IF(B17< $C$7,$C$4*($C$7 — B17),0)

Cell F17 Calculate the shortage cost if demand is greater than the replenishment level
=IF(B17>$C$7,$C$5*(B17 — $C$7),0)

Cell G17 Calculate net profit =D17 —E17 —F17

Cells A17 :G17 can be copied to cells A3 16:0316 in order to provide the 300 simulation
months.
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EXCELfile
Butler

FIGURE 12.20 WORKSHEET FOR THE BUTLER INVENTORY PROBLEM

• A B C
Butler Inventory

2
. 3 Gross Profit per Unit $50

•4 Holding Cost per Unit $15
5 . Shortage Cost per Unit $30

Replenishment Level 100

9 Demand (Normal Distribution)
10 Mean 100
11 Std Deviation 20
12
13
14 Simulation
is
1 Month Demand Sales Gross Profit Holding Cost Shortage Cost Net Profit
17 1 79 79 $3,950 $315 $0 $3,635
18 2 111 100 $5,000 ' $0 $330 $4,670
19 3 93 93 $4,650 $105 $0 $4,545
20 4 100 100 $5,000 $0 $0 $5,000
21 5 118 100 $5,000 $0 $540 $4,460
312 296 89 89 $4,450 $165 $0 $4,285
313 297 91 91 $4,550 $135 $0 $4,415
314 298 122 100 $5,000 $0 $660 $4,340
315 299 93 93 $4,650 $105 $0 $4,545
316 300 126 100 $5,000 $0 $780 $4,220
317
318 Totals 30,181 27,917 Summary Statistics

$4,2 V••319. Mean Profit
320 Standard Deviation $658ti

,,_ $:206'321
322

Minimum Profit
Maximum Profit

323 Service Level 925"A

Finally, summary statistics will be collected in order to describe the results of the 300
simulated trials. Using the standard Excel functions, the following totals and summary sta-
tistics are computed for the 300 months.

Cell B318

Cell C319

Cell G319

Cell G320

Cell G321

Cell G322

Cell G323

Total demand = SUM(B 17 :B316)

Total sales =SUIVI(C17:C316)

The mean profit per month =AVERAGE(G17:G316)

The standard deviation of net profit =STDEV(G17:G316)

The minimum net profit =MIN(G17:G316)

The maximum net profit =MAX(G17:G316)

The service level =C318/B318
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EXCELfile
Hammondsport1

The Hammondsport ATM Simulation Model

We simulated the operation of the Hammondsport ATM waiting line system for 1000 cus-
tomers. The worksheet used to carry out the simulation is shown again in Figure 12.21. Note
that the simulation results for customers 6 through 995 have been hidden so that the results
can be shown in a reasonably sized figure. If desired, the rows for these customers can be
shown and the simulation results displayed for all 1000 customers. Let us describe the de-
tails of the Excel worksheet that provided the Hammondsport ATM simulation.

The data are presented in the first 9 rows of the worksheet. The interarrival times are de-
scribed by a uniform distribution with a smallest time of 0 minutes (cell B4) and a largest time
of 5 minutes (cell B5). A normal probability distribution with a mean of 2 minutes (cell B8)
and a standard deviation of 0.5 minute (cell B9) describes the service time distribution.

FIGURE 12.21 WORKSHEET FOR THE HAMMONDSPORT SAVINGS BANK WITH ONE ATM

A B C D I

Hammondsport Savings Bank with One ATM

I
Interarrival Times (Uniform Distribution) .
Smallest Value 0
Largest Value 5

Service Times (Normal Distribution)
Mean
Std Deviation 0.5

11

12 Simulation
13
14 Interarrival Arrival Service Waiting Service

._
Completion Time

15 '' Customer Time Time Start Time Time Time Time in System
16 1 1.4 1.4 1.4 0.0 2.3 3.7 2.3

L 17 2 1.3 2.7 3.7
_

1.0 1.5 5.2 2.5
i 18 3 4.9 7.6 7.6 0.0 2.2 9.8 2.2
I /I9: 4 3.5 11.1 11.1 0.0 2.5 13.6 2.5
r. 20 5 0.7 11.8 13.6 1.8 1.8 15.4 3.6
1011 996 0.5 2496.8 2498.1 1.3 0.6 2498.7 1.9
1012 997 0.2 2497.0

_
2498.7 1.7 2.0 2500.7 3.7

1013 998 2.7 2499.7 2500.7 1.0 1.8 2502.5 2.8
.1014 999 3.7 2503.4 2503.4 0.0 2.4 2505.8 2.4
1015 1000 4.0 2507.4 2507.4 0.0 1.9 2509.3 1.9
4016
71017 Summary Statistics
1018 Number Waiting
1019 Probability of Waiting 0,0100:
1020 Average Waiting Time
1021 Maximum Waiting Time
1022 Utilization of ATM 1860-
1023 Number Waiting > 1 Min
1024 Probability of Waiting > 1 Mm 43'67:
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Simulation information for the first customer appears in row 16 of the worksheet. The
cell formulas for row 16 are as follows:

Cell A16 Enter 1 for the first customer

Cell B16 Simulate the interarrival time for customer 1 (uniform distribution)
=$B$4+RAND()*($B$5—$B$4)

Cell C16 Compute the arrival time for customer 1 =1316

Cell D16 Compute the start time for customer 1 =C16

Cell E16 Compute the waiting time for customer 1 =D1 —C16

Cell F16 Simulate the service time for customer 1 (normal distribution)
----- NORMINV(RANDO,$B$8,$B$9)

Cell G16 Compute the completion time for customer 1 = D16 + F16

Cell H16 Compute the time in the system for customer 1 =G16—C16

Simulation information for the second customer appears in row 17 of the worksheet.
The cell formulas for row 17 are as follows:

Cell Al? Enter 2 for the second customer

Cell B17 Simulate the interarrival time for customer 2 (uniform distribution)
=$B$4+RAND()*($B$5—$B$4)

Cell Cl? Compute the arrival time for customer 2 = C16 + B17

Cell D17 Compute the start time for customer 2 =1F(C17>G16,C17,G16)

Cell E17 Compute the waiting time for customer 2 D17—C17

Cell F17 Simulate the service time for customer 2 (normal distribution)
=NORM1NV(RAND(),$B$8,$B$9)

Cell G17 Compute the completion time for customer 2 =D17 +F17

Cell H17 Compute the time in the system for customer 2 G17—C17

Cells A17:H17 can be copied to cells A1015:H1015 in order to provide the 1000-customer
simulation.

Ultimately, summary statistics will be collected in order to describe the results of 1000 cus-
tomers. Before collecting the summary statistics, let us point out that most simulation studies
of dynamic systems focus on the operation of the system during its long-run or steady-state
operation. To ensure that the effects of start-up conditions are not included in the steady-state
calculations, a dynamic simulation model is usually run for a specified period without col-
lecting any data about the operation of the system. The length of the start-up period can vary
depending on the application. For the Harnmondsport Savings Bank ATM simulation, we
treated the results for the first 100 customers as the start-up period. The simulation infor-
mation for customer 100 appears in row 115 of the spreadsheet. Cell G115 shows that the
completion time for the 100th customer is 247.8. Thus the length of the start-up period is
247.8 minutes.

Summary statistics are collected for the next 900 customers corresponding to rows 116
to 1015 of the worksheet. The following Excel formulas provided the summary statistics.

Cell E1018 Number of customers who had to wait (i.e., waiting time > 0)
=COUNTIF(E116:E1015,">0")

Cell E1019 Probability of waiting =E1018/900

Cell E1020 The average waiting time =AVERAGE(E116:E1015)
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Cell E1021 The maximum waiting time =MAX(E116:E1015)

Cell E1022 The utilization of the ATM* =SUM(F116:F1015)/(G1015 — G115)

Cell E1023 The number of customers who had to wait more than 1 minute
=COUNT1F(E116:E1015, " >1")

Cell E1024 Probability of waiting more than 1 minute =E1023/900

Appendix 12.2 SIMULATION USING CRYSTAL BALL

In Section 12.1 we used simulation to perform risk analysis for the PortaCom problem, and
in Appendix 12.1 we showed how to construct the Excel worksheet that provided the simu-
lation results. Developing the worksheet simulation for the PortaCom problem using the
basic Excel package was relatively easy. The use of add-ins enables larger and more com-
plex simulation problems to be easily analyzed using spreadsheets. In this appendix, we
show how Crystal Ball, an add-in package, can be used to perform the PortaCom simula-
tion. We will run the simulation for 1000 trials here. Instructions for installing and starting
Crystal Ball are included with the Crystal Ball software.

Formulating a Crystal Ball IVIodel

We begin by entering the problem data into the top portion of the worksheet. For the PortaCom
problem, we must enter the following data: selling price, administrative cost, advertising
cost, probability distribution for the direct labor cost per unit, smallest and largest values
for the parts cost per unit (uniform distribution), and the mean and standard deviation for
first-year demand (normal distribution). These data with appropriate descriptive labels are
shown in cells A1:E13 of Figure 12.22.

For the PortaCom problem, the Crystal Ball model contains the following two compo-
nents: (1) cells for the probabilistic inputs (direct labor cost, parts cost, first-year demand),
and (2) a cell containing a formula for computing the value of the simulation model output
(profit). In Crystal Ball the cells that contain the values of the probabilistic inputs are called
assumption cells, and the cells that contain the formulas for the model outputs are referred
to as forecast cells. The PortaCom problem requires only one output (profit), and thus the
Crystal Ball model only contains one forecast cell. In more complex simulation problems
more than one forecast cell may be necessary.

The assumption cells may only contain simple numeric values. In this model-building
stage, we entered PortaCom's best estimates of the direct labor cost ($45), the parts cost
($90), and the first-year demand (15,000) into cells C21 :C23, respectively. The forecast
cells in a Crystal Ball model contain formulas that refer to one or more of the assumption
cells. Because only one forecast cell in the PortaCom problem corresponds to profit, we en-
tered the following formula into cell C27:

= (C3 — C21 — C22)*C23 — C4 — C5

The resulting value of $710,000 is the profit corresponding to the base-case scenario dis-
cussed in Section 12.1.

'The proportion of time the ATM is in use is equal to the sum of the 900 customer service times in column F divided by the

total elapsed time required for the 900 customers to complete service. This total elapsed time is the difference between the
completion time of customer 1000 and the completion time of customer 100.


