Quiz Regression

A mail-order catalog business that sells personal computer supplies, software, and hardware maintain a centralized warehouse for the distribution of products ordered. Management is currently examining the process of distribution from the warehouse and is interested in studying the factors that affect warehouse distribution costs. Currently, a small handling fee is added to the order, regardless of the amount of the order. Data have been collected over the past 24 months indicating the warehouse distribution costs and the number of orders received. The results and the scatter plot for the Cost and Orders. Assume the Cost is the dependent variable (Y) and Orders is the independent variable (X). The Costs are in $\$ 1000$.

The Summary Output Table above is resulted from regression analysis with Orders as independent variable (X) and Costs as dependent variable (Y) to fit a linear trend model to the data set. Use the Table to answer the following questions:

1. Which one(s) of the following is not correct regarding b_{l} ?
a. The 95% confidence interval is from 0.0131 to 0.0192
b. The costs will increase $\$ 16.10$ for each additional order received.
c. The slope of the regression line and is given by $=\operatorname{SLOPE}(\mathrm{D} 4: \mathrm{D} 27, \mathrm{C} 4: \mathrm{C} 27)$ in Excel@
d. Because the p-value is 0.0000 and is less than 0.05 , thus a non zero $b_{1}\left(\right.$ or $\left.b_{1} \neq 0\right)$ is confirmed.
2. Which one(s) of the following is not correct regarding b_{0} ?
a. The Y intercept of the regression line and is given by $=\operatorname{INTERCEPT}(\mathrm{D} 4: \mathrm{D} 27, \mathrm{C} 4: \mathrm{C} 27$)
b. It costs the firm $\$ 457.60$ to set up the operations (or the fixed cost) without even receiving any order yet
c. Because the p -value is 0.9451 and is larger than 0.05 , thus $\beta_{0}=0$ is confirmed, thus it is not necessary to include the Y intercept term in the regression model
d. The 95% confidence interval is from -13.1716 to14.0869, it spans zero (or zero is part of the confidence interval), thus $\beta_{0} \neq 0$ is confirmed, thus the Y intercept term should be included in the regression model
3. Which of the following Excel@ function or procedure cannot be used to get the estimates for the regression line (b_{0} and b_{1}) or provide predictions:
a. Use Excel@ =SUMPRODUCT(D4:D27,C4:C27) to compute b_{1}
b. Click any data point(s) on the scatter plot of the Costs and Orders, select Add Trendline / Display equations \& Display R-Squared value on the chart
c. Use Excel@ =TREND(D4:D27,C4:C27,XValue) to produce predictions
d. Select Data/Data Analysis/Regression with Orders and Costs ranges provided to get regression Summary Output
4. Which one(s) of the following is NOT correct regarding the estimated regression function?
a. The regression line is given by $\hat{Y}=0.4576+0.0161 \mathrm{X}$
b. The regression line is given by $\hat{Y}=0.0161+0.4576 \mathrm{X}$
c. For 3,500 orders, the costs will be around $\$ 56,869.10$ as given by Excel@ $=T R E N D(D 4: D 27, C 4: C 27,3500)$
d. The residual (error) is $\$ 12,219.64$ for 4015 orders as given in the first row of the data set
5. Which one(s) of the following is NOT correct regarding the R Square $\left(R^{2}\right)$ for the data?
a. 84.42% of the total variations of the data are explained by the regression line.
b. 15.58% of the total variations of the data are explained by the regression line.
c. It is the ratio of the RSS(Regression Sum of Squares) to TSS (Total Sum of Squares) or RSS/TSS.
d. The multiple $\mathrm{R}=0.9188$ is the square root of the R Square of 0.8442 .
6. What is the percentage of the total variations NOT explained by the regression line?
a. 15.58%
b. 84.42%
c. 91.88%
d. 83.71%
7. The Standard Error of Estimate ($S_{Y X}$ or S_{e}) to be used to approximate 95% prediction interval for the costs is:
a. 5.2183
b. 6.5719
c. 0.0015
d. 27.230
8. Which one(s) of the following is NOT correct regarding the relationship between the standard error of estimate $\left(\mathrm{S}_{\mathrm{e}}\right)$ and the standard prediction error $\left(\mathrm{S}_{\mathrm{p}}\right)$?
a. S_{e} is always smaller than S_{p}
b. S_{e} is always greater than S_{p}
c. S_{e} is the RMSE (Root Mean Squared Error) or the square root of MSE
d. S_{p} equals to S_{e} times a value that is greater than one.
9. Which one(s) of the following is NOT correct regarding the 95% prediction interval of the costs when specifically 4000 orders are received?
a. It is wider than the 95% prediction interval for the mean costs when 4000 orders are received.
b. It is given by the computed costs (\hat{Y}) with the $\mathrm{X}=4000$ orders $(\hat{Y}=0.4576+0.0161 *$ 4000) then plus or minus the margin of prediction error $\left(t S_{p}\right)$
c. It equals to $\hat{Y}_{i} \pm 2 S_{e}$
d. Non of the others is correct.
10. You may notice that the minimum and maximum numbers of orders for the data set are 2921 and 5735 orders respectively. Which one(s) of the following cannot be done regarding the use of the regression line?
a. To predict the costs when 3500 orders are received
b. To predict the costs when 5500 orders are received
c. To predict the costs when 2500 orders are received
d. To predict the costs when 4100 orders are received

	A	B	C	D
3	Month	Sales	Orders	Cost
4	1	386	4015	52.95
5	2	446	3806	71.66
6	3	512	5309	85.58
7	4	401	4262	63.69
8	5	457	4296	72.81
9	6	458	4097	68.44
10	7	301	3213	52.46
11	8	484	4809	70.77
12	9	517	5237	82.03
13	10	503	4732	74.39
14	11	535	4413	70.84
15	12	353	2921	54.08
16	13	372	3977	62.98
17	14	328	4428	72.3
18	15	408	3964	58.99
19	16	491	4582	79.38
20	17	527	5582	94.44
21	18	444	3450	59.74
22	19	623	5079	90.5
23	20	596	5735	93.24
24	21	463	4269	69.33
25	22	389	3708	53.71
26	23	547	5387	89.18
27	24	415	4161	66.8
-1				

4	U	V	W	X	Y	Z	AA
30	SUMMARY OUTPUT						
31							
32	Regression Statistics						
33	Multiple R	0.9188					
34	R Square	0.8442					
35	Adjusted R Square	0.8371					
36	Standard Error	5.2183					
37	Observations	24					
38							
39	ANOVA						
40		$d f$	SS	MS	F	Significance F	
41	Regression	1	3246.062	3246.062	119.207	0.000	
42	Residual	22	599.068	27.230			
43	Total	23	3845.130				
44							
45		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
46	Intercept	0.4576	6.5719	0.0696	0.9451	-13.1716	14.0869
47	Orders	0.0161	0.0015	10.9182	0.0000	0.0131	0.0192
10							

(Berenson, Levine and Krehbiel, $10^{\text {th }}$ Edition, Q. 13.36 on pp. 540-541)

